dataset_service.py 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398
  1. import datetime
  2. import json
  3. import logging
  4. import random
  5. import time
  6. import uuid
  7. from typing import Optional
  8. from flask import current_app
  9. from flask_login import current_user
  10. from sqlalchemy import func
  11. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.model_manager import ModelManager
  13. from core.model_runtime.entities.model_entities import ModelType
  14. from core.rag.datasource.keyword.keyword_factory import Keyword
  15. from core.rag.models.document import Document as RAGDocument
  16. from events.dataset_event import dataset_was_deleted
  17. from events.document_event import document_was_deleted
  18. from extensions.ext_database import db
  19. from extensions.ext_redis import redis_client
  20. from libs import helper
  21. from models.account import Account
  22. from models.dataset import (
  23. AppDatasetJoin,
  24. Dataset,
  25. DatasetCollectionBinding,
  26. DatasetProcessRule,
  27. DatasetQuery,
  28. Document,
  29. DocumentSegment,
  30. )
  31. from models.model import UploadFile
  32. from models.source import DataSourceBinding
  33. from services.errors.account import NoPermissionError
  34. from services.errors.dataset import DatasetInUseError, DatasetNameDuplicateError
  35. from services.errors.document import DocumentIndexingError
  36. from services.errors.file import FileNotExistsError
  37. from services.feature_service import FeatureModel, FeatureService
  38. from services.tag_service import TagService
  39. from services.vector_service import VectorService
  40. from tasks.clean_notion_document_task import clean_notion_document_task
  41. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  42. from tasks.delete_segment_from_index_task import delete_segment_from_index_task
  43. from tasks.disable_segment_from_index_task import disable_segment_from_index_task
  44. from tasks.document_indexing_task import document_indexing_task
  45. from tasks.document_indexing_update_task import document_indexing_update_task
  46. from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
  47. from tasks.recover_document_indexing_task import recover_document_indexing_task
  48. from tasks.retry_document_indexing_task import retry_document_indexing_task
  49. class DatasetService:
  50. @staticmethod
  51. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):
  52. if user:
  53. permission_filter = db.or_(Dataset.created_by == user.id,
  54. Dataset.permission == 'all_team_members')
  55. else:
  56. permission_filter = Dataset.permission == 'all_team_members'
  57. query = Dataset.query.filter(
  58. db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
  59. .order_by(Dataset.created_at.desc())
  60. if search:
  61. query = query.filter(db.and_(Dataset.name.ilike(f'%{search}%')))
  62. if tag_ids:
  63. target_ids = TagService.get_target_ids_by_tag_ids('knowledge', tenant_id, tag_ids)
  64. if target_ids:
  65. query = query.filter(db.and_(Dataset.id.in_(target_ids)))
  66. else:
  67. return [], 0
  68. datasets = query.paginate(
  69. page=page,
  70. per_page=per_page,
  71. max_per_page=100,
  72. error_out=False
  73. )
  74. return datasets.items, datasets.total
  75. @staticmethod
  76. def get_process_rules(dataset_id):
  77. # get the latest process rule
  78. dataset_process_rule = db.session.query(DatasetProcessRule). \
  79. filter(DatasetProcessRule.dataset_id == dataset_id). \
  80. order_by(DatasetProcessRule.created_at.desc()). \
  81. limit(1). \
  82. one_or_none()
  83. if dataset_process_rule:
  84. mode = dataset_process_rule.mode
  85. rules = dataset_process_rule.rules_dict
  86. else:
  87. mode = DocumentService.DEFAULT_RULES['mode']
  88. rules = DocumentService.DEFAULT_RULES['rules']
  89. return {
  90. 'mode': mode,
  91. 'rules': rules
  92. }
  93. @staticmethod
  94. def get_datasets_by_ids(ids, tenant_id):
  95. datasets = Dataset.query.filter(Dataset.id.in_(ids),
  96. Dataset.tenant_id == tenant_id).paginate(
  97. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
  98. return datasets.items, datasets.total
  99. @staticmethod
  100. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  101. # check if dataset name already exists
  102. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  103. raise DatasetNameDuplicateError(
  104. f'Dataset with name {name} already exists.')
  105. embedding_model = None
  106. if indexing_technique == 'high_quality':
  107. model_manager = ModelManager()
  108. embedding_model = model_manager.get_default_model_instance(
  109. tenant_id=tenant_id,
  110. model_type=ModelType.TEXT_EMBEDDING
  111. )
  112. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  113. # dataset = Dataset(name=name, provider=provider, config=config)
  114. dataset.created_by = account.id
  115. dataset.updated_by = account.id
  116. dataset.tenant_id = tenant_id
  117. dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
  118. dataset.embedding_model = embedding_model.model if embedding_model else None
  119. db.session.add(dataset)
  120. db.session.commit()
  121. return dataset
  122. @staticmethod
  123. def get_dataset(dataset_id):
  124. return Dataset.query.filter_by(
  125. id=dataset_id
  126. ).first()
  127. @staticmethod
  128. def check_dataset_model_setting(dataset):
  129. if dataset.indexing_technique == 'high_quality':
  130. try:
  131. model_manager = ModelManager()
  132. model_manager.get_model_instance(
  133. tenant_id=dataset.tenant_id,
  134. provider=dataset.embedding_model_provider,
  135. model_type=ModelType.TEXT_EMBEDDING,
  136. model=dataset.embedding_model
  137. )
  138. except LLMBadRequestError:
  139. raise ValueError(
  140. "No Embedding Model available. Please configure a valid provider "
  141. "in the Settings -> Model Provider.")
  142. except ProviderTokenNotInitError as ex:
  143. raise ValueError(f"The dataset in unavailable, due to: "
  144. f"{ex.description}")
  145. @staticmethod
  146. def update_dataset(dataset_id, data, user):
  147. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  148. dataset = DatasetService.get_dataset(dataset_id)
  149. DatasetService.check_dataset_permission(dataset, user)
  150. action = None
  151. if dataset.indexing_technique != data['indexing_technique']:
  152. # if update indexing_technique
  153. if data['indexing_technique'] == 'economy':
  154. action = 'remove'
  155. filtered_data['embedding_model'] = None
  156. filtered_data['embedding_model_provider'] = None
  157. filtered_data['collection_binding_id'] = None
  158. elif data['indexing_technique'] == 'high_quality':
  159. action = 'add'
  160. # get embedding model setting
  161. try:
  162. model_manager = ModelManager()
  163. embedding_model = model_manager.get_model_instance(
  164. tenant_id=current_user.current_tenant_id,
  165. provider=data['embedding_model_provider'],
  166. model_type=ModelType.TEXT_EMBEDDING,
  167. model=data['embedding_model']
  168. )
  169. filtered_data['embedding_model'] = embedding_model.model
  170. filtered_data['embedding_model_provider'] = embedding_model.provider
  171. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  172. embedding_model.provider,
  173. embedding_model.model
  174. )
  175. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  176. except LLMBadRequestError:
  177. raise ValueError(
  178. "No Embedding Model available. Please configure a valid provider "
  179. "in the Settings -> Model Provider.")
  180. except ProviderTokenNotInitError as ex:
  181. raise ValueError(ex.description)
  182. else:
  183. if data['embedding_model_provider'] != dataset.embedding_model_provider or \
  184. data['embedding_model'] != dataset.embedding_model:
  185. action = 'update'
  186. try:
  187. model_manager = ModelManager()
  188. embedding_model = model_manager.get_model_instance(
  189. tenant_id=current_user.current_tenant_id,
  190. provider=data['embedding_model_provider'],
  191. model_type=ModelType.TEXT_EMBEDDING,
  192. model=data['embedding_model']
  193. )
  194. filtered_data['embedding_model'] = embedding_model.model
  195. filtered_data['embedding_model_provider'] = embedding_model.provider
  196. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  197. embedding_model.provider,
  198. embedding_model.model
  199. )
  200. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  201. except LLMBadRequestError:
  202. raise ValueError(
  203. "No Embedding Model available. Please configure a valid provider "
  204. "in the Settings -> Model Provider.")
  205. except ProviderTokenNotInitError as ex:
  206. raise ValueError(ex.description)
  207. filtered_data['updated_by'] = user.id
  208. filtered_data['updated_at'] = datetime.datetime.now()
  209. # update Retrieval model
  210. filtered_data['retrieval_model'] = data['retrieval_model']
  211. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  212. db.session.commit()
  213. if action:
  214. deal_dataset_vector_index_task.delay(dataset_id, action)
  215. return dataset
  216. @staticmethod
  217. def delete_dataset(dataset_id, user):
  218. count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()
  219. if count > 0:
  220. raise DatasetInUseError()
  221. dataset = DatasetService.get_dataset(dataset_id)
  222. if dataset is None:
  223. return False
  224. DatasetService.check_dataset_permission(dataset, user)
  225. dataset_was_deleted.send(dataset)
  226. db.session.delete(dataset)
  227. db.session.commit()
  228. return True
  229. @staticmethod
  230. def check_dataset_permission(dataset, user):
  231. if dataset.tenant_id != user.current_tenant_id:
  232. logging.debug(
  233. f'User {user.id} does not have permission to access dataset {dataset.id}')
  234. raise NoPermissionError(
  235. 'You do not have permission to access this dataset.')
  236. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  237. logging.debug(
  238. f'User {user.id} does not have permission to access dataset {dataset.id}')
  239. raise NoPermissionError(
  240. 'You do not have permission to access this dataset.')
  241. @staticmethod
  242. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  243. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  244. .order_by(db.desc(DatasetQuery.created_at)) \
  245. .paginate(
  246. page=page, per_page=per_page, max_per_page=100, error_out=False
  247. )
  248. return dataset_queries.items, dataset_queries.total
  249. @staticmethod
  250. def get_related_apps(dataset_id: str):
  251. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  252. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  253. class DocumentService:
  254. DEFAULT_RULES = {
  255. 'mode': 'custom',
  256. 'rules': {
  257. 'pre_processing_rules': [
  258. {'id': 'remove_extra_spaces', 'enabled': True},
  259. {'id': 'remove_urls_emails', 'enabled': False}
  260. ],
  261. 'segmentation': {
  262. 'delimiter': '\n',
  263. 'max_tokens': 500,
  264. 'chunk_overlap': 50
  265. }
  266. }
  267. }
  268. DOCUMENT_METADATA_SCHEMA = {
  269. "book": {
  270. "title": str,
  271. "language": str,
  272. "author": str,
  273. "publisher": str,
  274. "publication_date": str,
  275. "isbn": str,
  276. "category": str,
  277. },
  278. "web_page": {
  279. "title": str,
  280. "url": str,
  281. "language": str,
  282. "publish_date": str,
  283. "author/publisher": str,
  284. "topic/keywords": str,
  285. "description": str,
  286. },
  287. "paper": {
  288. "title": str,
  289. "language": str,
  290. "author": str,
  291. "publish_date": str,
  292. "journal/conference_name": str,
  293. "volume/issue/page_numbers": str,
  294. "doi": str,
  295. "topic/keywords": str,
  296. "abstract": str,
  297. },
  298. "social_media_post": {
  299. "platform": str,
  300. "author/username": str,
  301. "publish_date": str,
  302. "post_url": str,
  303. "topic/tags": str,
  304. },
  305. "wikipedia_entry": {
  306. "title": str,
  307. "language": str,
  308. "web_page_url": str,
  309. "last_edit_date": str,
  310. "editor/contributor": str,
  311. "summary/introduction": str,
  312. },
  313. "personal_document": {
  314. "title": str,
  315. "author": str,
  316. "creation_date": str,
  317. "last_modified_date": str,
  318. "document_type": str,
  319. "tags/category": str,
  320. },
  321. "business_document": {
  322. "title": str,
  323. "author": str,
  324. "creation_date": str,
  325. "last_modified_date": str,
  326. "document_type": str,
  327. "department/team": str,
  328. },
  329. "im_chat_log": {
  330. "chat_platform": str,
  331. "chat_participants/group_name": str,
  332. "start_date": str,
  333. "end_date": str,
  334. "summary": str,
  335. },
  336. "synced_from_notion": {
  337. "title": str,
  338. "language": str,
  339. "author/creator": str,
  340. "creation_date": str,
  341. "last_modified_date": str,
  342. "notion_page_link": str,
  343. "category/tags": str,
  344. "description": str,
  345. },
  346. "synced_from_github": {
  347. "repository_name": str,
  348. "repository_description": str,
  349. "repository_owner/organization": str,
  350. "code_filename": str,
  351. "code_file_path": str,
  352. "programming_language": str,
  353. "github_link": str,
  354. "open_source_license": str,
  355. "commit_date": str,
  356. "commit_author": str,
  357. },
  358. "others": dict
  359. }
  360. @staticmethod
  361. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  362. document = db.session.query(Document).filter(
  363. Document.id == document_id,
  364. Document.dataset_id == dataset_id
  365. ).first()
  366. return document
  367. @staticmethod
  368. def get_document_by_id(document_id: str) -> Optional[Document]:
  369. document = db.session.query(Document).filter(
  370. Document.id == document_id
  371. ).first()
  372. return document
  373. @staticmethod
  374. def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
  375. documents = db.session.query(Document).filter(
  376. Document.dataset_id == dataset_id,
  377. Document.enabled == True
  378. ).all()
  379. return documents
  380. @staticmethod
  381. def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
  382. documents = db.session.query(Document).filter(
  383. Document.dataset_id == dataset_id,
  384. Document.indexing_status.in_(['error', 'paused'])
  385. ).all()
  386. return documents
  387. @staticmethod
  388. def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
  389. documents = db.session.query(Document).filter(
  390. Document.batch == batch,
  391. Document.dataset_id == dataset_id,
  392. Document.tenant_id == current_user.current_tenant_id
  393. ).all()
  394. return documents
  395. @staticmethod
  396. def get_document_file_detail(file_id: str):
  397. file_detail = db.session.query(UploadFile). \
  398. filter(UploadFile.id == file_id). \
  399. one_or_none()
  400. return file_detail
  401. @staticmethod
  402. def check_archived(document):
  403. if document.archived:
  404. return True
  405. else:
  406. return False
  407. @staticmethod
  408. def delete_document(document):
  409. # trigger document_was_deleted signal
  410. document_was_deleted.send(document.id, dataset_id=document.dataset_id, doc_form=document.doc_form)
  411. db.session.delete(document)
  412. db.session.commit()
  413. @staticmethod
  414. def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
  415. dataset = DatasetService.get_dataset(dataset_id)
  416. if not dataset:
  417. raise ValueError('Dataset not found.')
  418. document = DocumentService.get_document(dataset_id, document_id)
  419. if not document:
  420. raise ValueError('Document not found.')
  421. if document.tenant_id != current_user.current_tenant_id:
  422. raise ValueError('No permission.')
  423. document.name = name
  424. db.session.add(document)
  425. db.session.commit()
  426. return document
  427. @staticmethod
  428. def pause_document(document):
  429. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  430. raise DocumentIndexingError()
  431. # update document to be paused
  432. document.is_paused = True
  433. document.paused_by = current_user.id
  434. document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  435. db.session.add(document)
  436. db.session.commit()
  437. # set document paused flag
  438. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  439. redis_client.setnx(indexing_cache_key, "True")
  440. @staticmethod
  441. def recover_document(document):
  442. if not document.is_paused:
  443. raise DocumentIndexingError()
  444. # update document to be recover
  445. document.is_paused = False
  446. document.paused_by = None
  447. document.paused_at = None
  448. db.session.add(document)
  449. db.session.commit()
  450. # delete paused flag
  451. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  452. redis_client.delete(indexing_cache_key)
  453. # trigger async task
  454. recover_document_indexing_task.delay(document.dataset_id, document.id)
  455. @staticmethod
  456. def retry_document(dataset_id: str, documents: list[Document]):
  457. for document in documents:
  458. # retry document indexing
  459. document.indexing_status = 'waiting'
  460. db.session.add(document)
  461. db.session.commit()
  462. # add retry flag
  463. retry_indexing_cache_key = 'document_{}_is_retried'.format(document.id)
  464. redis_client.setex(retry_indexing_cache_key, 600, 1)
  465. # trigger async task
  466. document_ids = [document.id for document in documents]
  467. retry_document_indexing_task.delay(dataset_id, document_ids)
  468. @staticmethod
  469. def get_documents_position(dataset_id):
  470. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  471. if document:
  472. return document.position + 1
  473. else:
  474. return 1
  475. @staticmethod
  476. def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
  477. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  478. created_from: str = 'web'):
  479. # check document limit
  480. features = FeatureService.get_features(current_user.current_tenant_id)
  481. if features.billing.enabled:
  482. if 'original_document_id' not in document_data or not document_data['original_document_id']:
  483. count = 0
  484. if document_data["data_source"]["type"] == "upload_file":
  485. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  486. count = len(upload_file_list)
  487. elif document_data["data_source"]["type"] == "notion_import":
  488. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  489. for notion_info in notion_info_list:
  490. count = count + len(notion_info['pages'])
  491. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  492. if count > batch_upload_limit:
  493. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  494. DocumentService.check_documents_upload_quota(count, features)
  495. # if dataset is empty, update dataset data_source_type
  496. if not dataset.data_source_type:
  497. dataset.data_source_type = document_data["data_source"]["type"]
  498. if not dataset.indexing_technique:
  499. if 'indexing_technique' not in document_data \
  500. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  501. raise ValueError("Indexing technique is required")
  502. dataset.indexing_technique = document_data["indexing_technique"]
  503. if document_data["indexing_technique"] == 'high_quality':
  504. model_manager = ModelManager()
  505. embedding_model = model_manager.get_default_model_instance(
  506. tenant_id=current_user.current_tenant_id,
  507. model_type=ModelType.TEXT_EMBEDDING
  508. )
  509. dataset.embedding_model = embedding_model.model
  510. dataset.embedding_model_provider = embedding_model.provider
  511. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  512. embedding_model.provider,
  513. embedding_model.model
  514. )
  515. dataset.collection_binding_id = dataset_collection_binding.id
  516. if not dataset.retrieval_model:
  517. default_retrieval_model = {
  518. 'search_method': 'semantic_search',
  519. 'reranking_enable': False,
  520. 'reranking_model': {
  521. 'reranking_provider_name': '',
  522. 'reranking_model_name': ''
  523. },
  524. 'top_k': 2,
  525. 'score_threshold_enabled': False
  526. }
  527. dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
  528. 'retrieval_model') else default_retrieval_model
  529. documents = []
  530. batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
  531. if document_data.get("original_document_id"):
  532. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  533. documents.append(document)
  534. else:
  535. # save process rule
  536. if not dataset_process_rule:
  537. process_rule = document_data["process_rule"]
  538. if process_rule["mode"] == "custom":
  539. dataset_process_rule = DatasetProcessRule(
  540. dataset_id=dataset.id,
  541. mode=process_rule["mode"],
  542. rules=json.dumps(process_rule["rules"]),
  543. created_by=account.id
  544. )
  545. elif process_rule["mode"] == "automatic":
  546. dataset_process_rule = DatasetProcessRule(
  547. dataset_id=dataset.id,
  548. mode=process_rule["mode"],
  549. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  550. created_by=account.id
  551. )
  552. db.session.add(dataset_process_rule)
  553. db.session.commit()
  554. position = DocumentService.get_documents_position(dataset.id)
  555. document_ids = []
  556. duplicate_document_ids = []
  557. if document_data["data_source"]["type"] == "upload_file":
  558. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  559. for file_id in upload_file_list:
  560. file = db.session.query(UploadFile).filter(
  561. UploadFile.tenant_id == dataset.tenant_id,
  562. UploadFile.id == file_id
  563. ).first()
  564. # raise error if file not found
  565. if not file:
  566. raise FileNotExistsError()
  567. file_name = file.name
  568. data_source_info = {
  569. "upload_file_id": file_id,
  570. }
  571. # check duplicate
  572. if document_data.get('duplicate', False):
  573. document = Document.query.filter_by(
  574. dataset_id=dataset.id,
  575. tenant_id=current_user.current_tenant_id,
  576. data_source_type='upload_file',
  577. enabled=True,
  578. name=file_name
  579. ).first()
  580. if document:
  581. document.dataset_process_rule_id = dataset_process_rule.id
  582. document.updated_at = datetime.datetime.utcnow()
  583. document.created_from = created_from
  584. document.doc_form = document_data['doc_form']
  585. document.doc_language = document_data['doc_language']
  586. document.data_source_info = json.dumps(data_source_info)
  587. document.batch = batch
  588. document.indexing_status = 'waiting'
  589. db.session.add(document)
  590. documents.append(document)
  591. duplicate_document_ids.append(document.id)
  592. continue
  593. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  594. document_data["data_source"]["type"],
  595. document_data["doc_form"],
  596. document_data["doc_language"],
  597. data_source_info, created_from, position,
  598. account, file_name, batch)
  599. db.session.add(document)
  600. db.session.flush()
  601. document_ids.append(document.id)
  602. documents.append(document)
  603. position += 1
  604. elif document_data["data_source"]["type"] == "notion_import":
  605. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  606. exist_page_ids = []
  607. exist_document = dict()
  608. documents = Document.query.filter_by(
  609. dataset_id=dataset.id,
  610. tenant_id=current_user.current_tenant_id,
  611. data_source_type='notion_import',
  612. enabled=True
  613. ).all()
  614. if documents:
  615. for document in documents:
  616. data_source_info = json.loads(document.data_source_info)
  617. exist_page_ids.append(data_source_info['notion_page_id'])
  618. exist_document[data_source_info['notion_page_id']] = document.id
  619. for notion_info in notion_info_list:
  620. workspace_id = notion_info['workspace_id']
  621. data_source_binding = DataSourceBinding.query.filter(
  622. db.and_(
  623. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  624. DataSourceBinding.provider == 'notion',
  625. DataSourceBinding.disabled == False,
  626. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  627. )
  628. ).first()
  629. if not data_source_binding:
  630. raise ValueError('Data source binding not found.')
  631. for page in notion_info['pages']:
  632. if page['page_id'] not in exist_page_ids:
  633. data_source_info = {
  634. "notion_workspace_id": workspace_id,
  635. "notion_page_id": page['page_id'],
  636. "notion_page_icon": page['page_icon'],
  637. "type": page['type']
  638. }
  639. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  640. document_data["data_source"]["type"],
  641. document_data["doc_form"],
  642. document_data["doc_language"],
  643. data_source_info, created_from, position,
  644. account, page['page_name'], batch)
  645. db.session.add(document)
  646. db.session.flush()
  647. document_ids.append(document.id)
  648. documents.append(document)
  649. position += 1
  650. else:
  651. exist_document.pop(page['page_id'])
  652. # delete not selected documents
  653. if len(exist_document) > 0:
  654. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  655. db.session.commit()
  656. # trigger async task
  657. if document_ids:
  658. document_indexing_task.delay(dataset.id, document_ids)
  659. if duplicate_document_ids:
  660. duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
  661. return documents, batch
  662. @staticmethod
  663. def check_documents_upload_quota(count: int, features: FeatureModel):
  664. can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
  665. if count > can_upload_size:
  666. raise ValueError(
  667. f'You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded.')
  668. @staticmethod
  669. def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
  670. document_language: str, data_source_info: dict, created_from: str, position: int,
  671. account: Account,
  672. name: str, batch: str):
  673. document = Document(
  674. tenant_id=dataset.tenant_id,
  675. dataset_id=dataset.id,
  676. position=position,
  677. data_source_type=data_source_type,
  678. data_source_info=json.dumps(data_source_info),
  679. dataset_process_rule_id=process_rule_id,
  680. batch=batch,
  681. name=name,
  682. created_from=created_from,
  683. created_by=account.id,
  684. doc_form=document_form,
  685. doc_language=document_language
  686. )
  687. return document
  688. @staticmethod
  689. def get_tenant_documents_count():
  690. documents_count = Document.query.filter(Document.completed_at.isnot(None),
  691. Document.enabled == True,
  692. Document.archived == False,
  693. Document.tenant_id == current_user.current_tenant_id).count()
  694. return documents_count
  695. @staticmethod
  696. def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
  697. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  698. created_from: str = 'web'):
  699. DatasetService.check_dataset_model_setting(dataset)
  700. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  701. if document.display_status != 'available':
  702. raise ValueError("Document is not available")
  703. # update document name
  704. if document_data.get('name'):
  705. document.name = document_data['name']
  706. # save process rule
  707. if document_data.get('process_rule'):
  708. process_rule = document_data["process_rule"]
  709. if process_rule["mode"] == "custom":
  710. dataset_process_rule = DatasetProcessRule(
  711. dataset_id=dataset.id,
  712. mode=process_rule["mode"],
  713. rules=json.dumps(process_rule["rules"]),
  714. created_by=account.id
  715. )
  716. elif process_rule["mode"] == "automatic":
  717. dataset_process_rule = DatasetProcessRule(
  718. dataset_id=dataset.id,
  719. mode=process_rule["mode"],
  720. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  721. created_by=account.id
  722. )
  723. db.session.add(dataset_process_rule)
  724. db.session.commit()
  725. document.dataset_process_rule_id = dataset_process_rule.id
  726. # update document data source
  727. if document_data.get('data_source'):
  728. file_name = ''
  729. data_source_info = {}
  730. if document_data["data_source"]["type"] == "upload_file":
  731. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  732. for file_id in upload_file_list:
  733. file = db.session.query(UploadFile).filter(
  734. UploadFile.tenant_id == dataset.tenant_id,
  735. UploadFile.id == file_id
  736. ).first()
  737. # raise error if file not found
  738. if not file:
  739. raise FileNotExistsError()
  740. file_name = file.name
  741. data_source_info = {
  742. "upload_file_id": file_id,
  743. }
  744. elif document_data["data_source"]["type"] == "notion_import":
  745. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  746. for notion_info in notion_info_list:
  747. workspace_id = notion_info['workspace_id']
  748. data_source_binding = DataSourceBinding.query.filter(
  749. db.and_(
  750. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  751. DataSourceBinding.provider == 'notion',
  752. DataSourceBinding.disabled == False,
  753. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  754. )
  755. ).first()
  756. if not data_source_binding:
  757. raise ValueError('Data source binding not found.')
  758. for page in notion_info['pages']:
  759. data_source_info = {
  760. "notion_workspace_id": workspace_id,
  761. "notion_page_id": page['page_id'],
  762. "notion_page_icon": page['page_icon'],
  763. "type": page['type']
  764. }
  765. document.data_source_type = document_data["data_source"]["type"]
  766. document.data_source_info = json.dumps(data_source_info)
  767. document.name = file_name
  768. # update document to be waiting
  769. document.indexing_status = 'waiting'
  770. document.completed_at = None
  771. document.processing_started_at = None
  772. document.parsing_completed_at = None
  773. document.cleaning_completed_at = None
  774. document.splitting_completed_at = None
  775. document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  776. document.created_from = created_from
  777. document.doc_form = document_data['doc_form']
  778. db.session.add(document)
  779. db.session.commit()
  780. # update document segment
  781. update_params = {
  782. DocumentSegment.status: 're_segment'
  783. }
  784. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  785. db.session.commit()
  786. # trigger async task
  787. document_indexing_update_task.delay(document.dataset_id, document.id)
  788. return document
  789. @staticmethod
  790. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  791. features = FeatureService.get_features(current_user.current_tenant_id)
  792. if features.billing.enabled:
  793. count = 0
  794. if document_data["data_source"]["type"] == "upload_file":
  795. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  796. count = len(upload_file_list)
  797. elif document_data["data_source"]["type"] == "notion_import":
  798. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  799. for notion_info in notion_info_list:
  800. count = count + len(notion_info['pages'])
  801. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  802. if count > batch_upload_limit:
  803. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  804. DocumentService.check_documents_upload_quota(count, features)
  805. embedding_model = None
  806. dataset_collection_binding_id = None
  807. retrieval_model = None
  808. if document_data['indexing_technique'] == 'high_quality':
  809. model_manager = ModelManager()
  810. embedding_model = model_manager.get_default_model_instance(
  811. tenant_id=current_user.current_tenant_id,
  812. model_type=ModelType.TEXT_EMBEDDING
  813. )
  814. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  815. embedding_model.provider,
  816. embedding_model.model
  817. )
  818. dataset_collection_binding_id = dataset_collection_binding.id
  819. if document_data.get('retrieval_model'):
  820. retrieval_model = document_data['retrieval_model']
  821. else:
  822. default_retrieval_model = {
  823. 'search_method': 'semantic_search',
  824. 'reranking_enable': False,
  825. 'reranking_model': {
  826. 'reranking_provider_name': '',
  827. 'reranking_model_name': ''
  828. },
  829. 'top_k': 2,
  830. 'score_threshold_enabled': False
  831. }
  832. retrieval_model = default_retrieval_model
  833. # save dataset
  834. dataset = Dataset(
  835. tenant_id=tenant_id,
  836. name='',
  837. data_source_type=document_data["data_source"]["type"],
  838. indexing_technique=document_data["indexing_technique"],
  839. created_by=account.id,
  840. embedding_model=embedding_model.model if embedding_model else None,
  841. embedding_model_provider=embedding_model.provider if embedding_model else None,
  842. collection_binding_id=dataset_collection_binding_id,
  843. retrieval_model=retrieval_model
  844. )
  845. db.session.add(dataset)
  846. db.session.flush()
  847. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  848. cut_length = 18
  849. cut_name = documents[0].name[:cut_length]
  850. dataset.name = cut_name + '...'
  851. dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
  852. db.session.commit()
  853. return dataset, documents, batch
  854. @classmethod
  855. def document_create_args_validate(cls, args: dict):
  856. if 'original_document_id' not in args or not args['original_document_id']:
  857. DocumentService.data_source_args_validate(args)
  858. DocumentService.process_rule_args_validate(args)
  859. else:
  860. if ('data_source' not in args and not args['data_source']) \
  861. and ('process_rule' not in args and not args['process_rule']):
  862. raise ValueError("Data source or Process rule is required")
  863. else:
  864. if args.get('data_source'):
  865. DocumentService.data_source_args_validate(args)
  866. if args.get('process_rule'):
  867. DocumentService.process_rule_args_validate(args)
  868. @classmethod
  869. def data_source_args_validate(cls, args: dict):
  870. if 'data_source' not in args or not args['data_source']:
  871. raise ValueError("Data source is required")
  872. if not isinstance(args['data_source'], dict):
  873. raise ValueError("Data source is invalid")
  874. if 'type' not in args['data_source'] or not args['data_source']['type']:
  875. raise ValueError("Data source type is required")
  876. if args['data_source']['type'] not in Document.DATA_SOURCES:
  877. raise ValueError("Data source type is invalid")
  878. if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
  879. raise ValueError("Data source info is required")
  880. if args['data_source']['type'] == 'upload_file':
  881. if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  882. 'file_info_list']:
  883. raise ValueError("File source info is required")
  884. if args['data_source']['type'] == 'notion_import':
  885. if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  886. 'notion_info_list']:
  887. raise ValueError("Notion source info is required")
  888. @classmethod
  889. def process_rule_args_validate(cls, args: dict):
  890. if 'process_rule' not in args or not args['process_rule']:
  891. raise ValueError("Process rule is required")
  892. if not isinstance(args['process_rule'], dict):
  893. raise ValueError("Process rule is invalid")
  894. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  895. raise ValueError("Process rule mode is required")
  896. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  897. raise ValueError("Process rule mode is invalid")
  898. if args['process_rule']['mode'] == 'automatic':
  899. args['process_rule']['rules'] = {}
  900. else:
  901. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  902. raise ValueError("Process rule rules is required")
  903. if not isinstance(args['process_rule']['rules'], dict):
  904. raise ValueError("Process rule rules is invalid")
  905. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  906. or args['process_rule']['rules']['pre_processing_rules'] is None:
  907. raise ValueError("Process rule pre_processing_rules is required")
  908. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  909. raise ValueError("Process rule pre_processing_rules is invalid")
  910. unique_pre_processing_rule_dicts = {}
  911. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  912. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  913. raise ValueError("Process rule pre_processing_rules id is required")
  914. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  915. raise ValueError("Process rule pre_processing_rules id is invalid")
  916. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  917. raise ValueError("Process rule pre_processing_rules enabled is required")
  918. if not isinstance(pre_processing_rule['enabled'], bool):
  919. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  920. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  921. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  922. if 'segmentation' not in args['process_rule']['rules'] \
  923. or args['process_rule']['rules']['segmentation'] is None:
  924. raise ValueError("Process rule segmentation is required")
  925. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  926. raise ValueError("Process rule segmentation is invalid")
  927. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  928. or not args['process_rule']['rules']['segmentation']['separator']:
  929. raise ValueError("Process rule segmentation separator is required")
  930. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  931. raise ValueError("Process rule segmentation separator is invalid")
  932. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  933. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  934. raise ValueError("Process rule segmentation max_tokens is required")
  935. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  936. raise ValueError("Process rule segmentation max_tokens is invalid")
  937. @classmethod
  938. def estimate_args_validate(cls, args: dict):
  939. if 'info_list' not in args or not args['info_list']:
  940. raise ValueError("Data source info is required")
  941. if not isinstance(args['info_list'], dict):
  942. raise ValueError("Data info is invalid")
  943. if 'process_rule' not in args or not args['process_rule']:
  944. raise ValueError("Process rule is required")
  945. if not isinstance(args['process_rule'], dict):
  946. raise ValueError("Process rule is invalid")
  947. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  948. raise ValueError("Process rule mode is required")
  949. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  950. raise ValueError("Process rule mode is invalid")
  951. if args['process_rule']['mode'] == 'automatic':
  952. args['process_rule']['rules'] = {}
  953. else:
  954. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  955. raise ValueError("Process rule rules is required")
  956. if not isinstance(args['process_rule']['rules'], dict):
  957. raise ValueError("Process rule rules is invalid")
  958. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  959. or args['process_rule']['rules']['pre_processing_rules'] is None:
  960. raise ValueError("Process rule pre_processing_rules is required")
  961. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  962. raise ValueError("Process rule pre_processing_rules is invalid")
  963. unique_pre_processing_rule_dicts = {}
  964. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  965. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  966. raise ValueError("Process rule pre_processing_rules id is required")
  967. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  968. raise ValueError("Process rule pre_processing_rules id is invalid")
  969. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  970. raise ValueError("Process rule pre_processing_rules enabled is required")
  971. if not isinstance(pre_processing_rule['enabled'], bool):
  972. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  973. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  974. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  975. if 'segmentation' not in args['process_rule']['rules'] \
  976. or args['process_rule']['rules']['segmentation'] is None:
  977. raise ValueError("Process rule segmentation is required")
  978. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  979. raise ValueError("Process rule segmentation is invalid")
  980. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  981. or not args['process_rule']['rules']['segmentation']['separator']:
  982. raise ValueError("Process rule segmentation separator is required")
  983. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  984. raise ValueError("Process rule segmentation separator is invalid")
  985. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  986. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  987. raise ValueError("Process rule segmentation max_tokens is required")
  988. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  989. raise ValueError("Process rule segmentation max_tokens is invalid")
  990. class SegmentService:
  991. @classmethod
  992. def segment_create_args_validate(cls, args: dict, document: Document):
  993. if document.doc_form == 'qa_model':
  994. if 'answer' not in args or not args['answer']:
  995. raise ValueError("Answer is required")
  996. if not args['answer'].strip():
  997. raise ValueError("Answer is empty")
  998. if 'content' not in args or not args['content'] or not args['content'].strip():
  999. raise ValueError("Content is empty")
  1000. @classmethod
  1001. def create_segment(cls, args: dict, document: Document, dataset: Dataset):
  1002. content = args['content']
  1003. doc_id = str(uuid.uuid4())
  1004. segment_hash = helper.generate_text_hash(content)
  1005. tokens = 0
  1006. if dataset.indexing_technique == 'high_quality':
  1007. model_manager = ModelManager()
  1008. embedding_model = model_manager.get_model_instance(
  1009. tenant_id=current_user.current_tenant_id,
  1010. provider=dataset.embedding_model_provider,
  1011. model_type=ModelType.TEXT_EMBEDDING,
  1012. model=dataset.embedding_model
  1013. )
  1014. # calc embedding use tokens
  1015. tokens = embedding_model.get_text_embedding_num_tokens(
  1016. texts=[content]
  1017. )
  1018. lock_name = 'add_segment_lock_document_id_{}'.format(document.id)
  1019. with redis_client.lock(lock_name, timeout=600):
  1020. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  1021. DocumentSegment.document_id == document.id
  1022. ).scalar()
  1023. segment_document = DocumentSegment(
  1024. tenant_id=current_user.current_tenant_id,
  1025. dataset_id=document.dataset_id,
  1026. document_id=document.id,
  1027. index_node_id=doc_id,
  1028. index_node_hash=segment_hash,
  1029. position=max_position + 1 if max_position else 1,
  1030. content=content,
  1031. word_count=len(content),
  1032. tokens=tokens,
  1033. status='completed',
  1034. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1035. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1036. created_by=current_user.id
  1037. )
  1038. if document.doc_form == 'qa_model':
  1039. segment_document.answer = args['answer']
  1040. db.session.add(segment_document)
  1041. db.session.commit()
  1042. # save vector index
  1043. try:
  1044. VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)
  1045. except Exception as e:
  1046. logging.exception("create segment index failed")
  1047. segment_document.enabled = False
  1048. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1049. segment_document.status = 'error'
  1050. segment_document.error = str(e)
  1051. db.session.commit()
  1052. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
  1053. return segment
  1054. @classmethod
  1055. def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
  1056. lock_name = 'multi_add_segment_lock_document_id_{}'.format(document.id)
  1057. with redis_client.lock(lock_name, timeout=600):
  1058. embedding_model = None
  1059. if dataset.indexing_technique == 'high_quality':
  1060. model_manager = ModelManager()
  1061. embedding_model = model_manager.get_model_instance(
  1062. tenant_id=current_user.current_tenant_id,
  1063. provider=dataset.embedding_model_provider,
  1064. model_type=ModelType.TEXT_EMBEDDING,
  1065. model=dataset.embedding_model
  1066. )
  1067. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  1068. DocumentSegment.document_id == document.id
  1069. ).scalar()
  1070. pre_segment_data_list = []
  1071. segment_data_list = []
  1072. keywords_list = []
  1073. for segment_item in segments:
  1074. content = segment_item['content']
  1075. doc_id = str(uuid.uuid4())
  1076. segment_hash = helper.generate_text_hash(content)
  1077. tokens = 0
  1078. if dataset.indexing_technique == 'high_quality' and embedding_model:
  1079. # calc embedding use tokens
  1080. tokens = embedding_model.get_text_embedding_num_tokens(
  1081. texts=[content]
  1082. )
  1083. segment_document = DocumentSegment(
  1084. tenant_id=current_user.current_tenant_id,
  1085. dataset_id=document.dataset_id,
  1086. document_id=document.id,
  1087. index_node_id=doc_id,
  1088. index_node_hash=segment_hash,
  1089. position=max_position + 1 if max_position else 1,
  1090. content=content,
  1091. word_count=len(content),
  1092. tokens=tokens,
  1093. status='completed',
  1094. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1095. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1096. created_by=current_user.id
  1097. )
  1098. if document.doc_form == 'qa_model':
  1099. segment_document.answer = segment_item['answer']
  1100. db.session.add(segment_document)
  1101. segment_data_list.append(segment_document)
  1102. pre_segment_data_list.append(segment_document)
  1103. keywords_list.append(segment_item['keywords'])
  1104. try:
  1105. # save vector index
  1106. VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
  1107. except Exception as e:
  1108. logging.exception("create segment index failed")
  1109. for segment_document in segment_data_list:
  1110. segment_document.enabled = False
  1111. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1112. segment_document.status = 'error'
  1113. segment_document.error = str(e)
  1114. db.session.commit()
  1115. return segment_data_list
  1116. @classmethod
  1117. def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
  1118. indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
  1119. cache_result = redis_client.get(indexing_cache_key)
  1120. if cache_result is not None:
  1121. raise ValueError("Segment is indexing, please try again later")
  1122. if 'enabled' in args and args['enabled'] is not None:
  1123. action = args['enabled']
  1124. if segment.enabled != action:
  1125. if not action:
  1126. segment.enabled = action
  1127. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1128. segment.disabled_by = current_user.id
  1129. db.session.add(segment)
  1130. db.session.commit()
  1131. # Set cache to prevent indexing the same segment multiple times
  1132. redis_client.setex(indexing_cache_key, 600, 1)
  1133. disable_segment_from_index_task.delay(segment.id)
  1134. return segment
  1135. if not segment.enabled:
  1136. if 'enabled' in args and args['enabled'] is not None:
  1137. if not args['enabled']:
  1138. raise ValueError("Can't update disabled segment")
  1139. else:
  1140. raise ValueError("Can't update disabled segment")
  1141. try:
  1142. content = args['content']
  1143. if segment.content == content:
  1144. if document.doc_form == 'qa_model':
  1145. segment.answer = args['answer']
  1146. if args.get('keywords'):
  1147. segment.keywords = args['keywords']
  1148. segment.enabled = True
  1149. segment.disabled_at = None
  1150. segment.disabled_by = None
  1151. db.session.add(segment)
  1152. db.session.commit()
  1153. # update segment index task
  1154. if args['keywords']:
  1155. keyword = Keyword(dataset)
  1156. keyword.delete_by_ids([segment.index_node_id])
  1157. document = RAGDocument(
  1158. page_content=segment.content,
  1159. metadata={
  1160. "doc_id": segment.index_node_id,
  1161. "doc_hash": segment.index_node_hash,
  1162. "document_id": segment.document_id,
  1163. "dataset_id": segment.dataset_id,
  1164. }
  1165. )
  1166. keyword.add_texts([document], keywords_list=[args['keywords']])
  1167. else:
  1168. segment_hash = helper.generate_text_hash(content)
  1169. tokens = 0
  1170. if dataset.indexing_technique == 'high_quality':
  1171. model_manager = ModelManager()
  1172. embedding_model = model_manager.get_model_instance(
  1173. tenant_id=current_user.current_tenant_id,
  1174. provider=dataset.embedding_model_provider,
  1175. model_type=ModelType.TEXT_EMBEDDING,
  1176. model=dataset.embedding_model
  1177. )
  1178. # calc embedding use tokens
  1179. tokens = embedding_model.get_text_embedding_num_tokens(
  1180. texts=[content]
  1181. )
  1182. segment.content = content
  1183. segment.index_node_hash = segment_hash
  1184. segment.word_count = len(content)
  1185. segment.tokens = tokens
  1186. segment.status = 'completed'
  1187. segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1188. segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1189. segment.updated_by = current_user.id
  1190. segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1191. segment.enabled = True
  1192. segment.disabled_at = None
  1193. segment.disabled_by = None
  1194. if document.doc_form == 'qa_model':
  1195. segment.answer = args['answer']
  1196. db.session.add(segment)
  1197. db.session.commit()
  1198. # update segment vector index
  1199. VectorService.update_segment_vector(args['keywords'], segment, dataset)
  1200. except Exception as e:
  1201. logging.exception("update segment index failed")
  1202. segment.enabled = False
  1203. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1204. segment.status = 'error'
  1205. segment.error = str(e)
  1206. db.session.commit()
  1207. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
  1208. return segment
  1209. @classmethod
  1210. def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
  1211. indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
  1212. cache_result = redis_client.get(indexing_cache_key)
  1213. if cache_result is not None:
  1214. raise ValueError("Segment is deleting.")
  1215. # enabled segment need to delete index
  1216. if segment.enabled:
  1217. # send delete segment index task
  1218. redis_client.setex(indexing_cache_key, 600, 1)
  1219. delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
  1220. db.session.delete(segment)
  1221. db.session.commit()
  1222. class DatasetCollectionBindingService:
  1223. @classmethod
  1224. def get_dataset_collection_binding(cls, provider_name: str, model_name: str,
  1225. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1226. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1227. filter(DatasetCollectionBinding.provider_name == provider_name,
  1228. DatasetCollectionBinding.model_name == model_name,
  1229. DatasetCollectionBinding.type == collection_type). \
  1230. order_by(DatasetCollectionBinding.created_at). \
  1231. first()
  1232. if not dataset_collection_binding:
  1233. dataset_collection_binding = DatasetCollectionBinding(
  1234. provider_name=provider_name,
  1235. model_name=model_name,
  1236. collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
  1237. type=collection_type
  1238. )
  1239. db.session.add(dataset_collection_binding)
  1240. db.session.commit()
  1241. return dataset_collection_binding
  1242. @classmethod
  1243. def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str,
  1244. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1245. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1246. filter(DatasetCollectionBinding.id == collection_binding_id,
  1247. DatasetCollectionBinding.type == collection_type). \
  1248. order_by(DatasetCollectionBinding.created_at). \
  1249. first()
  1250. return dataset_collection_binding