123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855 |
- import datetime
- import json
- import logging
- import re
- import threading
- import time
- import uuid
- from typing import Optional, List, cast, Type, Union, Literal, AbstractSet, Collection, Any
- from flask import current_app, Flask
- from flask_login import current_user
- from langchain.schema import Document
- from langchain.text_splitter import TextSplitter, TS, TokenTextSplitter
- from sqlalchemy.orm.exc import ObjectDeletedError
- from core.data_loader.file_extractor import FileExtractor
- from core.data_loader.loader.notion import NotionLoader
- from core.docstore.dataset_docstore import DatasetDocumentStore
- from core.generator.llm_generator import LLMGenerator
- from core.index.index import IndexBuilder
- from core.model_manager import ModelManager
- from core.errors.error import ProviderTokenNotInitError
- from core.model_runtime.entities.model_entities import ModelType, PriceType
- from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
- from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
- from core.model_runtime.model_providers.__base.tokenizers.gpt2_tokenzier import GPT2Tokenizer
- from core.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter, EnhanceRecursiveCharacterTextSplitter
- from extensions.ext_database import db
- from extensions.ext_redis import redis_client
- from extensions.ext_storage import storage
- from libs import helper
- from models.dataset import Document as DatasetDocument
- from models.dataset import Dataset, DocumentSegment, DatasetProcessRule
- from models.model import UploadFile
- from models.source import DataSourceBinding
- class IndexingRunner:
- def __init__(self):
- self.storage = storage
- self.model_manager = ModelManager()
- def run(self, dataset_documents: List[DatasetDocument]):
- """Run the indexing process."""
- for dataset_document in dataset_documents:
- try:
- # get dataset
- dataset = Dataset.query.filter_by(
- id=dataset_document.dataset_id
- ).first()
- if not dataset:
- raise ValueError("no dataset found")
- # get the process rule
- processing_rule = db.session.query(DatasetProcessRule). \
- filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
- first()
- # load file
- text_docs = self._load_data(dataset_document, processing_rule.mode == 'automatic')
- # get splitter
- splitter = self._get_splitter(processing_rule)
- # split to documents
- documents = self._step_split(
- text_docs=text_docs,
- splitter=splitter,
- dataset=dataset,
- dataset_document=dataset_document,
- processing_rule=processing_rule
- )
- self._build_index(
- dataset=dataset,
- dataset_document=dataset_document,
- documents=documents
- )
- except DocumentIsPausedException:
- raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
- except ProviderTokenNotInitError as e:
- dataset_document.indexing_status = 'error'
- dataset_document.error = str(e.description)
- dataset_document.stopped_at = datetime.datetime.utcnow()
- db.session.commit()
- except ObjectDeletedError:
- logging.warning('Document deleted, document id: {}'.format(dataset_document.id))
- except Exception as e:
- logging.exception("consume document failed")
- dataset_document.indexing_status = 'error'
- dataset_document.error = str(e)
- dataset_document.stopped_at = datetime.datetime.utcnow()
- db.session.commit()
- def run_in_splitting_status(self, dataset_document: DatasetDocument):
- """Run the indexing process when the index_status is splitting."""
- try:
- # get dataset
- dataset = Dataset.query.filter_by(
- id=dataset_document.dataset_id
- ).first()
- if not dataset:
- raise ValueError("no dataset found")
- # get exist document_segment list and delete
- document_segments = DocumentSegment.query.filter_by(
- dataset_id=dataset.id,
- document_id=dataset_document.id
- ).all()
- for document_segment in document_segments:
- db.session.delete(document_segment)
- db.session.commit()
- # get the process rule
- processing_rule = db.session.query(DatasetProcessRule). \
- filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
- first()
- # load file
- text_docs = self._load_data(dataset_document, processing_rule.mode == 'automatic')
- # get splitter
- splitter = self._get_splitter(processing_rule)
- # split to documents
- documents = self._step_split(
- text_docs=text_docs,
- splitter=splitter,
- dataset=dataset,
- dataset_document=dataset_document,
- processing_rule=processing_rule
- )
- # build index
- self._build_index(
- dataset=dataset,
- dataset_document=dataset_document,
- documents=documents
- )
- except DocumentIsPausedException:
- raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
- except ProviderTokenNotInitError as e:
- dataset_document.indexing_status = 'error'
- dataset_document.error = str(e.description)
- dataset_document.stopped_at = datetime.datetime.utcnow()
- db.session.commit()
- except Exception as e:
- logging.exception("consume document failed")
- dataset_document.indexing_status = 'error'
- dataset_document.error = str(e)
- dataset_document.stopped_at = datetime.datetime.utcnow()
- db.session.commit()
- def run_in_indexing_status(self, dataset_document: DatasetDocument):
- """Run the indexing process when the index_status is indexing."""
- try:
- # get dataset
- dataset = Dataset.query.filter_by(
- id=dataset_document.dataset_id
- ).first()
- if not dataset:
- raise ValueError("no dataset found")
- # get exist document_segment list and delete
- document_segments = DocumentSegment.query.filter_by(
- dataset_id=dataset.id,
- document_id=dataset_document.id
- ).all()
- documents = []
- if document_segments:
- for document_segment in document_segments:
- # transform segment to node
- if document_segment.status != "completed":
- document = Document(
- page_content=document_segment.content,
- metadata={
- "doc_id": document_segment.index_node_id,
- "doc_hash": document_segment.index_node_hash,
- "document_id": document_segment.document_id,
- "dataset_id": document_segment.dataset_id,
- }
- )
- documents.append(document)
- # build index
- self._build_index(
- dataset=dataset,
- dataset_document=dataset_document,
- documents=documents
- )
- except DocumentIsPausedException:
- raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
- except ProviderTokenNotInitError as e:
- dataset_document.indexing_status = 'error'
- dataset_document.error = str(e.description)
- dataset_document.stopped_at = datetime.datetime.utcnow()
- db.session.commit()
- except Exception as e:
- logging.exception("consume document failed")
- dataset_document.indexing_status = 'error'
- dataset_document.error = str(e)
- dataset_document.stopped_at = datetime.datetime.utcnow()
- db.session.commit()
- def file_indexing_estimate(self, tenant_id: str, file_details: List[UploadFile], tmp_processing_rule: dict,
- doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
- indexing_technique: str = 'economy') -> dict:
- """
- Estimate the indexing for the document.
- """
- embedding_model_instance = None
- if dataset_id:
- dataset = Dataset.query.filter_by(
- id=dataset_id
- ).first()
- if not dataset:
- raise ValueError('Dataset not found.')
- if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
- embedding_model_instance = self.model_manager.get_model_instance(
- tenant_id=tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model
- )
- else:
- if indexing_technique == 'high_quality':
- embedding_model_instance = self.model_manager.get_default_model_instance(
- tenant_id=tenant_id,
- model_type=ModelType.TEXT_EMBEDDING,
- )
- tokens = 0
- preview_texts = []
- total_segments = 0
- for file_detail in file_details:
- processing_rule = DatasetProcessRule(
- mode=tmp_processing_rule["mode"],
- rules=json.dumps(tmp_processing_rule["rules"])
- )
- # load data from file
- text_docs = FileExtractor.load(file_detail, is_automatic=processing_rule.mode == 'automatic')
- # get splitter
- splitter = self._get_splitter(processing_rule)
- # split to documents
- documents = self._split_to_documents_for_estimate(
- text_docs=text_docs,
- splitter=splitter,
- processing_rule=processing_rule
- )
- total_segments += len(documents)
- for document in documents:
- if len(preview_texts) < 5:
- preview_texts.append(document.page_content)
- if indexing_technique == 'high_quality' or embedding_model_instance:
- embedding_model_type_instance = embedding_model_instance.model_type_instance
- embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
- tokens += embedding_model_type_instance.get_num_tokens(
- model=embedding_model_instance.model,
- credentials=embedding_model_instance.credentials,
- texts=[self.filter_string(document.page_content)]
- )
- if doc_form and doc_form == 'qa_model':
- model_instance = self.model_manager.get_default_model_instance(
- tenant_id=tenant_id,
- model_type=ModelType.LLM
- )
- model_type_instance = model_instance.model_type_instance
- model_type_instance = cast(LargeLanguageModel, model_type_instance)
- if len(preview_texts) > 0:
- # qa model document
- response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
- doc_language)
- document_qa_list = self.format_split_text(response)
- price_info = model_type_instance.get_price(
- model=model_instance.model,
- credentials=model_instance.credentials,
- price_type=PriceType.INPUT,
- tokens=total_segments * 2000,
- )
- return {
- "total_segments": total_segments * 20,
- "tokens": total_segments * 2000,
- "total_price": '{:f}'.format(price_info.total_amount),
- "currency": price_info.currency,
- "qa_preview": document_qa_list,
- "preview": preview_texts
- }
- if embedding_model_instance:
- embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_instance.model_type_instance)
- embedding_price_info = embedding_model_type_instance.get_price(
- model=embedding_model_instance.model,
- credentials=embedding_model_instance.credentials,
- price_type=PriceType.INPUT,
- tokens=tokens
- )
- return {
- "total_segments": total_segments,
- "tokens": tokens,
- "total_price": '{:f}'.format(embedding_price_info.total_amount) if embedding_model_instance else 0,
- "currency": embedding_price_info.currency if embedding_model_instance else 'USD',
- "preview": preview_texts
- }
- def notion_indexing_estimate(self, tenant_id: str, notion_info_list: list, tmp_processing_rule: dict,
- doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
- indexing_technique: str = 'economy') -> dict:
- """
- Estimate the indexing for the document.
- """
- embedding_model_instance = None
- if dataset_id:
- dataset = Dataset.query.filter_by(
- id=dataset_id
- ).first()
- if not dataset:
- raise ValueError('Dataset not found.')
- if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
- embedding_model_instance = self.model_manager.get_model_instance(
- tenant_id=tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model
- )
- else:
- if indexing_technique == 'high_quality':
- embedding_model_instance = self.model_manager.get_default_model_instance(
- tenant_id=tenant_id,
- model_type=ModelType.TEXT_EMBEDDING
- )
- # load data from notion
- tokens = 0
- preview_texts = []
- total_segments = 0
- for notion_info in notion_info_list:
- workspace_id = notion_info['workspace_id']
- data_source_binding = DataSourceBinding.query.filter(
- db.and_(
- DataSourceBinding.tenant_id == current_user.current_tenant_id,
- DataSourceBinding.provider == 'notion',
- DataSourceBinding.disabled == False,
- DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
- )
- ).first()
- if not data_source_binding:
- raise ValueError('Data source binding not found.')
- for page in notion_info['pages']:
- loader = NotionLoader(
- notion_access_token=data_source_binding.access_token,
- notion_workspace_id=workspace_id,
- notion_obj_id=page['page_id'],
- notion_page_type=page['type']
- )
- documents = loader.load()
- processing_rule = DatasetProcessRule(
- mode=tmp_processing_rule["mode"],
- rules=json.dumps(tmp_processing_rule["rules"])
- )
- # get splitter
- splitter = self._get_splitter(processing_rule)
- # split to documents
- documents = self._split_to_documents_for_estimate(
- text_docs=documents,
- splitter=splitter,
- processing_rule=processing_rule
- )
- total_segments += len(documents)
- embedding_model_type_instance = None
- if embedding_model_instance:
- embedding_model_type_instance = embedding_model_instance.model_type_instance
- embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
- for document in documents:
- if len(preview_texts) < 5:
- preview_texts.append(document.page_content)
- if indexing_technique == 'high_quality' and embedding_model_type_instance:
- tokens += embedding_model_type_instance.get_num_tokens(
- model=embedding_model_instance.model,
- credentials=embedding_model_instance.credentials,
- texts=[document.page_content]
- )
- if doc_form and doc_form == 'qa_model':
- model_instance = self.model_manager.get_default_model_instance(
- tenant_id=tenant_id,
- model_type=ModelType.LLM
- )
- model_type_instance = model_instance.model_type_instance
- model_type_instance = cast(LargeLanguageModel, model_type_instance)
- if len(preview_texts) > 0:
- # qa model document
- response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
- doc_language)
- document_qa_list = self.format_split_text(response)
- price_info = model_type_instance.get_price(
- model=model_instance.model,
- credentials=model_instance.credentials,
- price_type=PriceType.INPUT,
- tokens=total_segments * 2000,
- )
- return {
- "total_segments": total_segments * 20,
- "tokens": total_segments * 2000,
- "total_price": '{:f}'.format(price_info.total_amount),
- "currency": price_info.currency,
- "qa_preview": document_qa_list,
- "preview": preview_texts
- }
- embedding_model_type_instance = embedding_model_instance.model_type_instance
- embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
- embedding_price_info = embedding_model_type_instance.get_price(
- model=embedding_model_instance.model,
- credentials=embedding_model_instance.credentials,
- price_type=PriceType.INPUT,
- tokens=tokens
- )
- return {
- "total_segments": total_segments,
- "tokens": tokens,
- "total_price": '{:f}'.format(embedding_price_info.total_amount) if embedding_model_instance else 0,
- "currency": embedding_price_info.currency if embedding_model_instance else 'USD',
- "preview": preview_texts
- }
- def _load_data(self, dataset_document: DatasetDocument, automatic: bool = False) -> List[Document]:
- # load file
- if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
- return []
- data_source_info = dataset_document.data_source_info_dict
- text_docs = []
- if dataset_document.data_source_type == 'upload_file':
- if not data_source_info or 'upload_file_id' not in data_source_info:
- raise ValueError("no upload file found")
- file_detail = db.session.query(UploadFile). \
- filter(UploadFile.id == data_source_info['upload_file_id']). \
- one_or_none()
- if file_detail:
- text_docs = FileExtractor.load(file_detail, is_automatic=automatic)
- elif dataset_document.data_source_type == 'notion_import':
- loader = NotionLoader.from_document(dataset_document)
- text_docs = loader.load()
- # update document status to splitting
- self._update_document_index_status(
- document_id=dataset_document.id,
- after_indexing_status="splitting",
- extra_update_params={
- DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
- DatasetDocument.parsing_completed_at: datetime.datetime.utcnow()
- }
- )
- # replace doc id to document model id
- text_docs = cast(List[Document], text_docs)
- for text_doc in text_docs:
- # remove invalid symbol
- text_doc.page_content = self.filter_string(text_doc.page_content)
- text_doc.metadata['document_id'] = dataset_document.id
- text_doc.metadata['dataset_id'] = dataset_document.dataset_id
- return text_docs
- def filter_string(self, text):
- text = re.sub(r'<\|', '<', text)
- text = re.sub(r'\|>', '>', text)
- text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]', '', text)
- return text
- def _get_splitter(self, processing_rule: DatasetProcessRule) -> TextSplitter:
- """
- Get the NodeParser object according to the processing rule.
- """
- if processing_rule.mode == "custom":
- # The user-defined segmentation rule
- rules = json.loads(processing_rule.rules)
- segmentation = rules["segmentation"]
- if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
- raise ValueError("Custom segment length should be between 50 and 1000.")
- separator = segmentation["separator"]
- if separator:
- separator = separator.replace('\\n', '\n')
- character_splitter = FixedRecursiveCharacterTextSplitter.from_gpt2_encoder(
- chunk_size=segmentation["max_tokens"],
- chunk_overlap=0,
- fixed_separator=separator,
- separators=["\n\n", "。", ".", " ", ""]
- )
- else:
- # Automatic segmentation
- character_splitter = EnhanceRecursiveCharacterTextSplitter.from_gpt2_encoder(
- chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
- chunk_overlap=0,
- separators=["\n\n", "。", ".", " ", ""]
- )
- return character_splitter
- def _step_split(self, text_docs: List[Document], splitter: TextSplitter,
- dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
- -> List[Document]:
- """
- Split the text documents into documents and save them to the document segment.
- """
- documents = self._split_to_documents(
- text_docs=text_docs,
- splitter=splitter,
- processing_rule=processing_rule,
- tenant_id=dataset.tenant_id,
- document_form=dataset_document.doc_form,
- document_language=dataset_document.doc_language
- )
- # save node to document segment
- doc_store = DatasetDocumentStore(
- dataset=dataset,
- user_id=dataset_document.created_by,
- document_id=dataset_document.id
- )
- # add document segments
- doc_store.add_documents(documents)
- # update document status to indexing
- cur_time = datetime.datetime.utcnow()
- self._update_document_index_status(
- document_id=dataset_document.id,
- after_indexing_status="indexing",
- extra_update_params={
- DatasetDocument.cleaning_completed_at: cur_time,
- DatasetDocument.splitting_completed_at: cur_time,
- }
- )
- # update segment status to indexing
- self._update_segments_by_document(
- dataset_document_id=dataset_document.id,
- update_params={
- DocumentSegment.status: "indexing",
- DocumentSegment.indexing_at: datetime.datetime.utcnow()
- }
- )
- return documents
- def _split_to_documents(self, text_docs: List[Document], splitter: TextSplitter,
- processing_rule: DatasetProcessRule, tenant_id: str,
- document_form: str, document_language: str) -> List[Document]:
- """
- Split the text documents into nodes.
- """
- all_documents = []
- all_qa_documents = []
- for text_doc in text_docs:
- # document clean
- document_text = self._document_clean(text_doc.page_content, processing_rule)
- text_doc.page_content = document_text
- # parse document to nodes
- documents = splitter.split_documents([text_doc])
- split_documents = []
- for document_node in documents:
- if document_node.page_content.strip():
- doc_id = str(uuid.uuid4())
- hash = helper.generate_text_hash(document_node.page_content)
- document_node.metadata['doc_id'] = doc_id
- document_node.metadata['doc_hash'] = hash
- # delete Spliter character
- page_content = document_node.page_content
- if page_content.startswith(".") or page_content.startswith("。"):
- page_content = page_content[1:]
- else:
- page_content = page_content
- document_node.page_content = page_content
- split_documents.append(document_node)
- all_documents.extend(split_documents)
- # processing qa document
- if document_form == 'qa_model':
- for i in range(0, len(all_documents), 10):
- threads = []
- sub_documents = all_documents[i:i + 10]
- for doc in sub_documents:
- document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
- 'flask_app': current_app._get_current_object(),
- 'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
- 'document_language': document_language})
- threads.append(document_format_thread)
- document_format_thread.start()
- for thread in threads:
- thread.join()
- return all_qa_documents
- return all_documents
- def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
- format_documents = []
- if document_node.page_content is None or not document_node.page_content.strip():
- return
- with flask_app.app_context():
- try:
- # qa model document
- response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
- document_qa_list = self.format_split_text(response)
- qa_documents = []
- for result in document_qa_list:
- qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
- doc_id = str(uuid.uuid4())
- hash = helper.generate_text_hash(result['question'])
- qa_document.metadata['answer'] = result['answer']
- qa_document.metadata['doc_id'] = doc_id
- qa_document.metadata['doc_hash'] = hash
- qa_documents.append(qa_document)
- format_documents.extend(qa_documents)
- except Exception as e:
- logging.exception(e)
- all_qa_documents.extend(format_documents)
- def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter,
- processing_rule: DatasetProcessRule) -> List[Document]:
- """
- Split the text documents into nodes.
- """
- all_documents = []
- for text_doc in text_docs:
- # document clean
- document_text = self._document_clean(text_doc.page_content, processing_rule)
- text_doc.page_content = document_text
- # parse document to nodes
- documents = splitter.split_documents([text_doc])
- split_documents = []
- for document in documents:
- if document.page_content is None or not document.page_content.strip():
- continue
- doc_id = str(uuid.uuid4())
- hash = helper.generate_text_hash(document.page_content)
- document.metadata['doc_id'] = doc_id
- document.metadata['doc_hash'] = hash
- split_documents.append(document)
- all_documents.extend(split_documents)
- return all_documents
- def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
- """
- Clean the document text according to the processing rules.
- """
- if processing_rule.mode == "automatic":
- rules = DatasetProcessRule.AUTOMATIC_RULES
- else:
- rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
- if 'pre_processing_rules' in rules:
- pre_processing_rules = rules["pre_processing_rules"]
- for pre_processing_rule in pre_processing_rules:
- if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
- # Remove extra spaces
- pattern = r'\n{3,}'
- text = re.sub(pattern, '\n\n', text)
- pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
- text = re.sub(pattern, ' ', text)
- elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
- # Remove email
- pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
- text = re.sub(pattern, '', text)
- # Remove URL
- pattern = r'https?://[^\s]+'
- text = re.sub(pattern, '', text)
- return text
- def format_split_text(self, text):
- regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
- matches = re.findall(regex, text, re.UNICODE)
- return [
- {
- "question": q,
- "answer": re.sub(r"\n\s*", "\n", a.strip())
- }
- for q, a in matches if q and a
- ]
- def _build_index(self, dataset: Dataset, dataset_document: DatasetDocument, documents: List[Document]) -> None:
- """
- Build the index for the document.
- """
- vector_index = IndexBuilder.get_index(dataset, 'high_quality')
- keyword_table_index = IndexBuilder.get_index(dataset, 'economy')
- embedding_model_instance = None
- if dataset.indexing_technique == 'high_quality':
- embedding_model_instance = self.model_manager.get_model_instance(
- tenant_id=dataset.tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model
- )
- # chunk nodes by chunk size
- indexing_start_at = time.perf_counter()
- tokens = 0
- chunk_size = 100
- embedding_model_type_instance = None
- if embedding_model_instance:
- embedding_model_type_instance = embedding_model_instance.model_type_instance
- embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
- for i in range(0, len(documents), chunk_size):
- # check document is paused
- self._check_document_paused_status(dataset_document.id)
- chunk_documents = documents[i:i + chunk_size]
- if dataset.indexing_technique == 'high_quality' or embedding_model_type_instance:
- tokens += sum(
- embedding_model_type_instance.get_num_tokens(
- embedding_model_instance.model,
- embedding_model_instance.credentials,
- [document.page_content]
- )
- for document in chunk_documents
- )
- # save vector index
- if vector_index:
- vector_index.add_texts(chunk_documents)
- # save keyword index
- keyword_table_index.add_texts(chunk_documents)
- document_ids = [document.metadata['doc_id'] for document in chunk_documents]
- db.session.query(DocumentSegment).filter(
- DocumentSegment.document_id == dataset_document.id,
- DocumentSegment.index_node_id.in_(document_ids),
- DocumentSegment.status == "indexing"
- ).update({
- DocumentSegment.status: "completed",
- DocumentSegment.enabled: True,
- DocumentSegment.completed_at: datetime.datetime.utcnow()
- })
- db.session.commit()
- indexing_end_at = time.perf_counter()
- # update document status to completed
- self._update_document_index_status(
- document_id=dataset_document.id,
- after_indexing_status="completed",
- extra_update_params={
- DatasetDocument.tokens: tokens,
- DatasetDocument.completed_at: datetime.datetime.utcnow(),
- DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
- }
- )
- def _check_document_paused_status(self, document_id: str):
- indexing_cache_key = 'document_{}_is_paused'.format(document_id)
- result = redis_client.get(indexing_cache_key)
- if result:
- raise DocumentIsPausedException()
- def _update_document_index_status(self, document_id: str, after_indexing_status: str,
- extra_update_params: Optional[dict] = None) -> None:
- """
- Update the document indexing status.
- """
- count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
- if count > 0:
- raise DocumentIsPausedException()
- document = DatasetDocument.query.filter_by(id=document_id).first()
- if not document:
- raise DocumentIsDeletedPausedException()
- update_params = {
- DatasetDocument.indexing_status: after_indexing_status
- }
- if extra_update_params:
- update_params.update(extra_update_params)
- DatasetDocument.query.filter_by(id=document_id).update(update_params)
- db.session.commit()
- def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
- """
- Update the document segment by document id.
- """
- DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
- db.session.commit()
- def batch_add_segments(self, segments: List[DocumentSegment], dataset: Dataset):
- """
- Batch add segments index processing
- """
- documents = []
- for segment in segments:
- document = Document(
- page_content=segment.content,
- metadata={
- "doc_id": segment.index_node_id,
- "doc_hash": segment.index_node_hash,
- "document_id": segment.document_id,
- "dataset_id": segment.dataset_id,
- }
- )
- documents.append(document)
- # save vector index
- index = IndexBuilder.get_index(dataset, 'high_quality')
- if index:
- index.add_texts(documents, duplicate_check=True)
- # save keyword index
- index = IndexBuilder.get_index(dataset, 'economy')
- if index:
- index.add_texts(documents)
- class DocumentIsPausedException(Exception):
- pass
- class DocumentIsDeletedPausedException(Exception):
- pass
|