index.py 1.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051
  1. from flask import current_app
  2. from langchain.embeddings import OpenAIEmbeddings
  3. from core.embedding.cached_embedding import CacheEmbedding
  4. from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
  5. from core.index.vector_index.vector_index import VectorIndex
  6. from core.model_manager import ModelManager
  7. from core.model_runtime.entities.model_entities import ModelType
  8. from models.dataset import Dataset
  9. class IndexBuilder:
  10. @classmethod
  11. def get_index(cls, dataset: Dataset, indexing_technique: str, ignore_high_quality_check: bool = False):
  12. if indexing_technique == "high_quality":
  13. if not ignore_high_quality_check and dataset.indexing_technique != 'high_quality':
  14. return None
  15. model_manager = ModelManager()
  16. embedding_model = model_manager.get_model_instance(
  17. tenant_id=dataset.tenant_id,
  18. model_type=ModelType.TEXT_EMBEDDING,
  19. provider=dataset.embedding_model_provider,
  20. model=dataset.embedding_model
  21. )
  22. embeddings = CacheEmbedding(embedding_model)
  23. return VectorIndex(
  24. dataset=dataset,
  25. config=current_app.config,
  26. embeddings=embeddings
  27. )
  28. elif indexing_technique == "economy":
  29. return KeywordTableIndex(
  30. dataset=dataset,
  31. config=KeywordTableConfig(
  32. max_keywords_per_chunk=10
  33. )
  34. )
  35. else:
  36. raise ValueError('Unknown indexing technique')
  37. @classmethod
  38. def get_default_high_quality_index(cls, dataset: Dataset):
  39. embeddings = OpenAIEmbeddings(openai_api_key=' ')
  40. return VectorIndex(
  41. dataset=dataset,
  42. config=current_app.config,
  43. embeddings=embeddings
  44. )