dataset_retrieval.py 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624
  1. import math
  2. import threading
  3. from collections import Counter
  4. from typing import Optional, cast
  5. from flask import Flask, current_app
  6. from core.app.app_config.entities import DatasetEntity, DatasetRetrieveConfigEntity
  7. from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
  8. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  9. from core.entities.agent_entities import PlanningStrategy
  10. from core.memory.token_buffer_memory import TokenBufferMemory
  11. from core.model_manager import ModelInstance, ModelManager
  12. from core.model_runtime.entities.message_entities import PromptMessageTool
  13. from core.model_runtime.entities.model_entities import ModelFeature, ModelType
  14. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  15. from core.ops.ops_trace_manager import TraceQueueManager, TraceTask, TraceTaskName
  16. from core.ops.utils import measure_time
  17. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  18. from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
  19. from core.rag.datasource.retrieval_service import RetrievalService
  20. from core.rag.models.document import Document
  21. from core.rag.retrieval.retrival_methods import RetrievalMethod
  22. from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
  23. from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
  24. from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
  25. from core.tools.tool.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
  26. from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
  27. from extensions.ext_database import db
  28. from models.dataset import Dataset, DatasetQuery, DocumentSegment
  29. from models.dataset import Document as DatasetDocument
  30. default_retrieval_model = {
  31. 'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
  32. 'reranking_enable': False,
  33. 'reranking_model': {
  34. 'reranking_provider_name': '',
  35. 'reranking_model_name': ''
  36. },
  37. 'top_k': 2,
  38. 'score_threshold_enabled': False
  39. }
  40. class DatasetRetrieval:
  41. def __init__(self, application_generate_entity=None):
  42. self.application_generate_entity = application_generate_entity
  43. def retrieve(
  44. self, app_id: str, user_id: str, tenant_id: str,
  45. model_config: ModelConfigWithCredentialsEntity,
  46. config: DatasetEntity,
  47. query: str,
  48. invoke_from: InvokeFrom,
  49. show_retrieve_source: bool,
  50. hit_callback: DatasetIndexToolCallbackHandler,
  51. message_id: str,
  52. memory: Optional[TokenBufferMemory] = None,
  53. ) -> Optional[str]:
  54. """
  55. Retrieve dataset.
  56. :param app_id: app_id
  57. :param user_id: user_id
  58. :param tenant_id: tenant id
  59. :param model_config: model config
  60. :param config: dataset config
  61. :param query: query
  62. :param invoke_from: invoke from
  63. :param show_retrieve_source: show retrieve source
  64. :param hit_callback: hit callback
  65. :param message_id: message id
  66. :param memory: memory
  67. :return:
  68. """
  69. dataset_ids = config.dataset_ids
  70. if len(dataset_ids) == 0:
  71. return None
  72. retrieve_config = config.retrieve_config
  73. # check model is support tool calling
  74. model_type_instance = model_config.provider_model_bundle.model_type_instance
  75. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  76. model_manager = ModelManager()
  77. model_instance = model_manager.get_model_instance(
  78. tenant_id=tenant_id,
  79. model_type=ModelType.LLM,
  80. provider=model_config.provider,
  81. model=model_config.model
  82. )
  83. # get model schema
  84. model_schema = model_type_instance.get_model_schema(
  85. model=model_config.model,
  86. credentials=model_config.credentials
  87. )
  88. if not model_schema:
  89. return None
  90. planning_strategy = PlanningStrategy.REACT_ROUTER
  91. features = model_schema.features
  92. if features:
  93. if ModelFeature.TOOL_CALL in features \
  94. or ModelFeature.MULTI_TOOL_CALL in features:
  95. planning_strategy = PlanningStrategy.ROUTER
  96. available_datasets = []
  97. for dataset_id in dataset_ids:
  98. # get dataset from dataset id
  99. dataset = db.session.query(Dataset).filter(
  100. Dataset.tenant_id == tenant_id,
  101. Dataset.id == dataset_id
  102. ).first()
  103. # pass if dataset is not available
  104. if not dataset:
  105. continue
  106. # pass if dataset is not available
  107. if (dataset and dataset.available_document_count == 0
  108. and dataset.available_document_count == 0):
  109. continue
  110. available_datasets.append(dataset)
  111. all_documents = []
  112. user_from = 'account' if invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else 'end_user'
  113. if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
  114. all_documents = self.single_retrieve(
  115. app_id, tenant_id, user_id, user_from, available_datasets, query,
  116. model_instance,
  117. model_config, planning_strategy, message_id
  118. )
  119. elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
  120. all_documents = self.multiple_retrieve(
  121. app_id, tenant_id, user_id, user_from,
  122. available_datasets, query, retrieve_config.top_k,
  123. retrieve_config.score_threshold,
  124. retrieve_config.rerank_mode,
  125. retrieve_config.reranking_model,
  126. retrieve_config.weights,
  127. retrieve_config.reranking_enabled,
  128. message_id,
  129. )
  130. document_score_list = {}
  131. for item in all_documents:
  132. if item.metadata.get('score'):
  133. document_score_list[item.metadata['doc_id']] = item.metadata['score']
  134. document_context_list = []
  135. index_node_ids = [document.metadata['doc_id'] for document in all_documents]
  136. segments = DocumentSegment.query.filter(
  137. DocumentSegment.dataset_id.in_(dataset_ids),
  138. DocumentSegment.completed_at.isnot(None),
  139. DocumentSegment.status == 'completed',
  140. DocumentSegment.enabled == True,
  141. DocumentSegment.index_node_id.in_(index_node_ids)
  142. ).all()
  143. if segments:
  144. index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
  145. sorted_segments = sorted(segments,
  146. key=lambda segment: index_node_id_to_position.get(segment.index_node_id,
  147. float('inf')))
  148. for segment in sorted_segments:
  149. if segment.answer:
  150. document_context_list.append(f'question:{segment.get_sign_content()} answer:{segment.answer}')
  151. else:
  152. document_context_list.append(segment.get_sign_content())
  153. if show_retrieve_source:
  154. context_list = []
  155. resource_number = 1
  156. for segment in sorted_segments:
  157. dataset = Dataset.query.filter_by(
  158. id=segment.dataset_id
  159. ).first()
  160. document = DatasetDocument.query.filter(DatasetDocument.id == segment.document_id,
  161. DatasetDocument.enabled == True,
  162. DatasetDocument.archived == False,
  163. ).first()
  164. if dataset and document:
  165. source = {
  166. 'position': resource_number,
  167. 'dataset_id': dataset.id,
  168. 'dataset_name': dataset.name,
  169. 'document_id': document.id,
  170. 'document_name': document.name,
  171. 'data_source_type': document.data_source_type,
  172. 'segment_id': segment.id,
  173. 'retriever_from': invoke_from.to_source(),
  174. 'score': document_score_list.get(segment.index_node_id, None)
  175. }
  176. if invoke_from.to_source() == 'dev':
  177. source['hit_count'] = segment.hit_count
  178. source['word_count'] = segment.word_count
  179. source['segment_position'] = segment.position
  180. source['index_node_hash'] = segment.index_node_hash
  181. if segment.answer:
  182. source['content'] = f'question:{segment.content} \nanswer:{segment.answer}'
  183. else:
  184. source['content'] = segment.content
  185. context_list.append(source)
  186. resource_number += 1
  187. if hit_callback:
  188. hit_callback.return_retriever_resource_info(context_list)
  189. return str("\n".join(document_context_list))
  190. return ''
  191. def single_retrieve(
  192. self, app_id: str,
  193. tenant_id: str,
  194. user_id: str,
  195. user_from: str,
  196. available_datasets: list,
  197. query: str,
  198. model_instance: ModelInstance,
  199. model_config: ModelConfigWithCredentialsEntity,
  200. planning_strategy: PlanningStrategy,
  201. message_id: Optional[str] = None,
  202. ):
  203. tools = []
  204. for dataset in available_datasets:
  205. description = dataset.description
  206. if not description:
  207. description = 'useful for when you want to answer queries about the ' + dataset.name
  208. description = description.replace('\n', '').replace('\r', '')
  209. message_tool = PromptMessageTool(
  210. name=dataset.id,
  211. description=description,
  212. parameters={
  213. "type": "object",
  214. "properties": {},
  215. "required": [],
  216. }
  217. )
  218. tools.append(message_tool)
  219. dataset_id = None
  220. if planning_strategy == PlanningStrategy.REACT_ROUTER:
  221. react_multi_dataset_router = ReactMultiDatasetRouter()
  222. dataset_id = react_multi_dataset_router.invoke(query, tools, model_config, model_instance,
  223. user_id, tenant_id)
  224. elif planning_strategy == PlanningStrategy.ROUTER:
  225. function_call_router = FunctionCallMultiDatasetRouter()
  226. dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
  227. if dataset_id:
  228. # get retrieval model config
  229. dataset = db.session.query(Dataset).filter(
  230. Dataset.id == dataset_id
  231. ).first()
  232. if dataset:
  233. retrieval_model_config = dataset.retrieval_model \
  234. if dataset.retrieval_model else default_retrieval_model
  235. # get top k
  236. top_k = retrieval_model_config['top_k']
  237. # get retrieval method
  238. if dataset.indexing_technique == "economy":
  239. retrival_method = 'keyword_search'
  240. else:
  241. retrival_method = retrieval_model_config['search_method']
  242. # get reranking model
  243. reranking_model = retrieval_model_config['reranking_model'] \
  244. if retrieval_model_config['reranking_enable'] else None
  245. # get score threshold
  246. score_threshold = .0
  247. score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
  248. if score_threshold_enabled:
  249. score_threshold = retrieval_model_config.get("score_threshold")
  250. with measure_time() as timer:
  251. results = RetrievalService.retrieve(
  252. retrival_method=retrival_method, dataset_id=dataset.id,
  253. query=query,
  254. top_k=top_k, score_threshold=score_threshold,
  255. reranking_model=reranking_model,
  256. reranking_mode=retrieval_model_config.get('reranking_mode', 'reranking_model'),
  257. weights=retrieval_model_config.get('weights', None),
  258. )
  259. self._on_query(query, [dataset_id], app_id, user_from, user_id)
  260. if results:
  261. self._on_retrival_end(results, message_id, timer)
  262. return results
  263. return []
  264. def multiple_retrieve(
  265. self,
  266. app_id: str,
  267. tenant_id: str,
  268. user_id: str,
  269. user_from: str,
  270. available_datasets: list,
  271. query: str,
  272. top_k: int,
  273. score_threshold: float,
  274. reranking_mode: str,
  275. reranking_model: Optional[dict] = None,
  276. weights: Optional[dict] = None,
  277. reranking_enable: bool = True,
  278. message_id: Optional[str] = None,
  279. ):
  280. threads = []
  281. all_documents = []
  282. dataset_ids = [dataset.id for dataset in available_datasets]
  283. index_type = None
  284. for dataset in available_datasets:
  285. index_type = dataset.indexing_technique
  286. retrieval_thread = threading.Thread(target=self._retriever, kwargs={
  287. 'flask_app': current_app._get_current_object(),
  288. 'dataset_id': dataset.id,
  289. 'query': query,
  290. 'top_k': top_k,
  291. 'all_documents': all_documents,
  292. })
  293. threads.append(retrieval_thread)
  294. retrieval_thread.start()
  295. for thread in threads:
  296. thread.join()
  297. with measure_time() as timer:
  298. if reranking_enable:
  299. # do rerank for searched documents
  300. data_post_processor = DataPostProcessor(
  301. tenant_id, reranking_mode,
  302. reranking_model, weights, False
  303. )
  304. all_documents = data_post_processor.invoke(
  305. query=query,
  306. documents=all_documents,
  307. score_threshold=score_threshold,
  308. top_n=top_k
  309. )
  310. else:
  311. if index_type == "economy":
  312. all_documents = self.calculate_keyword_score(query, all_documents, top_k)
  313. elif index_type == "high_quality":
  314. all_documents = self.calculate_vector_score(all_documents, top_k, score_threshold)
  315. self._on_query(query, dataset_ids, app_id, user_from, user_id)
  316. if all_documents:
  317. self._on_retrival_end(all_documents, message_id, timer)
  318. return all_documents
  319. def _on_retrival_end(
  320. self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
  321. ) -> None:
  322. """Handle retrival end."""
  323. for document in documents:
  324. query = db.session.query(DocumentSegment).filter(
  325. DocumentSegment.index_node_id == document.metadata['doc_id']
  326. )
  327. # if 'dataset_id' in document.metadata:
  328. if 'dataset_id' in document.metadata:
  329. query = query.filter(DocumentSegment.dataset_id == document.metadata['dataset_id'])
  330. # add hit count to document segment
  331. query.update(
  332. {DocumentSegment.hit_count: DocumentSegment.hit_count + 1},
  333. synchronize_session=False
  334. )
  335. db.session.commit()
  336. # get tracing instance
  337. trace_manager: TraceQueueManager = self.application_generate_entity.trace_manager if self.application_generate_entity else None
  338. if trace_manager:
  339. trace_manager.add_trace_task(
  340. TraceTask(
  341. TraceTaskName.DATASET_RETRIEVAL_TRACE,
  342. message_id=message_id,
  343. documents=documents,
  344. timer=timer
  345. )
  346. )
  347. def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
  348. """
  349. Handle query.
  350. """
  351. if not query:
  352. return
  353. dataset_queries = []
  354. for dataset_id in dataset_ids:
  355. dataset_query = DatasetQuery(
  356. dataset_id=dataset_id,
  357. content=query,
  358. source='app',
  359. source_app_id=app_id,
  360. created_by_role=user_from,
  361. created_by=user_id
  362. )
  363. dataset_queries.append(dataset_query)
  364. if dataset_queries:
  365. db.session.add_all(dataset_queries)
  366. db.session.commit()
  367. def _retriever(self, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list):
  368. with flask_app.app_context():
  369. dataset = db.session.query(Dataset).filter(
  370. Dataset.id == dataset_id
  371. ).first()
  372. if not dataset:
  373. return []
  374. # get retrieval model , if the model is not setting , using default
  375. retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
  376. if dataset.indexing_technique == "economy":
  377. # use keyword table query
  378. documents = RetrievalService.retrieve(retrival_method='keyword_search',
  379. dataset_id=dataset.id,
  380. query=query,
  381. top_k=top_k
  382. )
  383. if documents:
  384. all_documents.extend(documents)
  385. else:
  386. if top_k > 0:
  387. # retrieval source
  388. documents = RetrievalService.retrieve(retrival_method=retrieval_model['search_method'],
  389. dataset_id=dataset.id,
  390. query=query,
  391. top_k=top_k,
  392. score_threshold=retrieval_model.get('score_threshold', .0)
  393. if retrieval_model['score_threshold_enabled'] else None,
  394. reranking_model=retrieval_model.get('reranking_model', None)
  395. if retrieval_model['reranking_enable'] else None,
  396. reranking_mode=retrieval_model.get('reranking_mode')
  397. if retrieval_model.get('reranking_mode') else 'reranking_model',
  398. weights=retrieval_model.get('weights', None),
  399. )
  400. all_documents.extend(documents)
  401. def to_dataset_retriever_tool(self, tenant_id: str,
  402. dataset_ids: list[str],
  403. retrieve_config: DatasetRetrieveConfigEntity,
  404. return_resource: bool,
  405. invoke_from: InvokeFrom,
  406. hit_callback: DatasetIndexToolCallbackHandler) \
  407. -> Optional[list[DatasetRetrieverBaseTool]]:
  408. """
  409. A dataset tool is a tool that can be used to retrieve information from a dataset
  410. :param tenant_id: tenant id
  411. :param dataset_ids: dataset ids
  412. :param retrieve_config: retrieve config
  413. :param return_resource: return resource
  414. :param invoke_from: invoke from
  415. :param hit_callback: hit callback
  416. """
  417. tools = []
  418. available_datasets = []
  419. for dataset_id in dataset_ids:
  420. # get dataset from dataset id
  421. dataset = db.session.query(Dataset).filter(
  422. Dataset.tenant_id == tenant_id,
  423. Dataset.id == dataset_id
  424. ).first()
  425. # pass if dataset is not available
  426. if not dataset:
  427. continue
  428. # pass if dataset is not available
  429. if (dataset and dataset.available_document_count == 0
  430. and dataset.available_document_count == 0):
  431. continue
  432. available_datasets.append(dataset)
  433. if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
  434. # get retrieval model config
  435. default_retrieval_model = {
  436. 'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
  437. 'reranking_enable': False,
  438. 'reranking_model': {
  439. 'reranking_provider_name': '',
  440. 'reranking_model_name': ''
  441. },
  442. 'top_k': 2,
  443. 'score_threshold_enabled': False
  444. }
  445. for dataset in available_datasets:
  446. retrieval_model_config = dataset.retrieval_model \
  447. if dataset.retrieval_model else default_retrieval_model
  448. # get top k
  449. top_k = retrieval_model_config['top_k']
  450. # get score threshold
  451. score_threshold = None
  452. score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
  453. if score_threshold_enabled:
  454. score_threshold = retrieval_model_config.get("score_threshold")
  455. tool = DatasetRetrieverTool.from_dataset(
  456. dataset=dataset,
  457. top_k=top_k,
  458. score_threshold=score_threshold,
  459. hit_callbacks=[hit_callback],
  460. return_resource=return_resource,
  461. retriever_from=invoke_from.to_source()
  462. )
  463. tools.append(tool)
  464. elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
  465. tool = DatasetMultiRetrieverTool.from_dataset(
  466. dataset_ids=[dataset.id for dataset in available_datasets],
  467. tenant_id=tenant_id,
  468. top_k=retrieve_config.top_k or 2,
  469. score_threshold=retrieve_config.score_threshold,
  470. hit_callbacks=[hit_callback],
  471. return_resource=return_resource,
  472. retriever_from=invoke_from.to_source(),
  473. reranking_provider_name=retrieve_config.reranking_model.get('reranking_provider_name'),
  474. reranking_model_name=retrieve_config.reranking_model.get('reranking_model_name')
  475. )
  476. tools.append(tool)
  477. return tools
  478. def calculate_keyword_score(self, query: str, documents: list[Document], top_k: int) -> list[Document]:
  479. """
  480. Calculate keywords scores
  481. :param query: search query
  482. :param documents: documents for reranking
  483. :return:
  484. """
  485. keyword_table_handler = JiebaKeywordTableHandler()
  486. query_keywords = keyword_table_handler.extract_keywords(query, None)
  487. documents_keywords = []
  488. for document in documents:
  489. # get the document keywords
  490. document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
  491. document.metadata['keywords'] = document_keywords
  492. documents_keywords.append(document_keywords)
  493. # Counter query keywords(TF)
  494. query_keyword_counts = Counter(query_keywords)
  495. # total documents
  496. total_documents = len(documents)
  497. # calculate all documents' keywords IDF
  498. all_keywords = set()
  499. for document_keywords in documents_keywords:
  500. all_keywords.update(document_keywords)
  501. keyword_idf = {}
  502. for keyword in all_keywords:
  503. # calculate include query keywords' documents
  504. doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
  505. # IDF
  506. keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
  507. query_tfidf = {}
  508. for keyword, count in query_keyword_counts.items():
  509. tf = count
  510. idf = keyword_idf.get(keyword, 0)
  511. query_tfidf[keyword] = tf * idf
  512. # calculate all documents' TF-IDF
  513. documents_tfidf = []
  514. for document_keywords in documents_keywords:
  515. document_keyword_counts = Counter(document_keywords)
  516. document_tfidf = {}
  517. for keyword, count in document_keyword_counts.items():
  518. tf = count
  519. idf = keyword_idf.get(keyword, 0)
  520. document_tfidf[keyword] = tf * idf
  521. documents_tfidf.append(document_tfidf)
  522. def cosine_similarity(vec1, vec2):
  523. intersection = set(vec1.keys()) & set(vec2.keys())
  524. numerator = sum(vec1[x] * vec2[x] for x in intersection)
  525. sum1 = sum(vec1[x] ** 2 for x in vec1.keys())
  526. sum2 = sum(vec2[x] ** 2 for x in vec2.keys())
  527. denominator = math.sqrt(sum1) * math.sqrt(sum2)
  528. if not denominator:
  529. return 0.0
  530. else:
  531. return float(numerator) / denominator
  532. similarities = []
  533. for document_tfidf in documents_tfidf:
  534. similarity = cosine_similarity(query_tfidf, document_tfidf)
  535. similarities.append(similarity)
  536. for document, score in zip(documents, similarities):
  537. # format document
  538. document.metadata['score'] = score
  539. documents = sorted(documents, key=lambda x: x.metadata['score'], reverse=True)
  540. return documents[:top_k] if top_k else documents
  541. def calculate_vector_score(self, all_documents: list[Document],
  542. top_k: int, score_threshold: float) -> list[Document]:
  543. filter_documents = []
  544. for document in all_documents:
  545. if score_threshold and document.metadata['score'] >= score_threshold:
  546. filter_documents.append(document)
  547. if not filter_documents:
  548. return []
  549. filter_documents = sorted(filter_documents, key=lambda x: x.metadata['score'], reverse=True)
  550. return filter_documents[:top_k] if top_k else filter_documents