123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465 |
- import json
- import logging
- from collections.abc import Generator
- from copy import deepcopy
- from typing import Any, Optional, Union
- from core.agent.base_agent_runner import BaseAgentRunner
- from core.app.apps.base_app_queue_manager import PublishFrom
- from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
- from core.file import file_manager
- from core.model_runtime.entities import (
- AssistantPromptMessage,
- LLMResult,
- LLMResultChunk,
- LLMResultChunkDelta,
- LLMUsage,
- PromptMessage,
- PromptMessageContent,
- PromptMessageContentType,
- SystemPromptMessage,
- TextPromptMessageContent,
- ToolPromptMessage,
- UserPromptMessage,
- )
- from core.model_runtime.entities.message_entities import ImagePromptMessageContent
- from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
- from core.tools.entities.tool_entities import ToolInvokeMeta
- from core.tools.tool_engine import ToolEngine
- from models.model import Message
- logger = logging.getLogger(__name__)
- class FunctionCallAgentRunner(BaseAgentRunner):
- def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
- """
- Run FunctionCall agent application
- """
- self.query = query
- app_generate_entity = self.application_generate_entity
- app_config = self.app_config
- # convert tools into ModelRuntime Tool format
- tool_instances, prompt_messages_tools = self._init_prompt_tools()
- iteration_step = 1
- max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
- # continue to run until there is not any tool call
- function_call_state = True
- llm_usage = {"usage": None}
- final_answer = ""
- # get tracing instance
- trace_manager = app_generate_entity.trace_manager
- def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
- if not final_llm_usage_dict["usage"]:
- final_llm_usage_dict["usage"] = usage
- else:
- llm_usage = final_llm_usage_dict["usage"]
- llm_usage.prompt_tokens += usage.prompt_tokens
- llm_usage.completion_tokens += usage.completion_tokens
- llm_usage.prompt_price += usage.prompt_price
- llm_usage.completion_price += usage.completion_price
- llm_usage.total_price += usage.total_price
- model_instance = self.model_instance
- while function_call_state and iteration_step <= max_iteration_steps:
- function_call_state = False
- if iteration_step == max_iteration_steps:
- # the last iteration, remove all tools
- prompt_messages_tools = []
- message_file_ids = []
- agent_thought = self.create_agent_thought(
- message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
- )
- # recalc llm max tokens
- prompt_messages = self._organize_prompt_messages()
- self.recalc_llm_max_tokens(self.model_config, prompt_messages)
- # invoke model
- chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
- prompt_messages=prompt_messages,
- model_parameters=app_generate_entity.model_conf.parameters,
- tools=prompt_messages_tools,
- stop=app_generate_entity.model_conf.stop,
- stream=self.stream_tool_call,
- user=self.user_id,
- callbacks=[],
- )
- tool_calls: list[tuple[str, str, dict[str, Any]]] = []
- # save full response
- response = ""
- # save tool call names and inputs
- tool_call_names = ""
- tool_call_inputs = ""
- current_llm_usage = None
- if self.stream_tool_call:
- is_first_chunk = True
- for chunk in chunks:
- if is_first_chunk:
- self.queue_manager.publish(
- QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
- )
- is_first_chunk = False
- # check if there is any tool call
- if self.check_tool_calls(chunk):
- function_call_state = True
- tool_calls.extend(self.extract_tool_calls(chunk))
- tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
- try:
- tool_call_inputs = json.dumps(
- {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
- )
- except json.JSONDecodeError as e:
- # ensure ascii to avoid encoding error
- tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
- if chunk.delta.message and chunk.delta.message.content:
- if isinstance(chunk.delta.message.content, list):
- for content in chunk.delta.message.content:
- response += content.data
- else:
- response += chunk.delta.message.content
- if chunk.delta.usage:
- increase_usage(llm_usage, chunk.delta.usage)
- current_llm_usage = chunk.delta.usage
- yield chunk
- else:
- result: LLMResult = chunks
- # check if there is any tool call
- if self.check_blocking_tool_calls(result):
- function_call_state = True
- tool_calls.extend(self.extract_blocking_tool_calls(result))
- tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
- try:
- tool_call_inputs = json.dumps(
- {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
- )
- except json.JSONDecodeError as e:
- # ensure ascii to avoid encoding error
- tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
- if result.usage:
- increase_usage(llm_usage, result.usage)
- current_llm_usage = result.usage
- if result.message and result.message.content:
- if isinstance(result.message.content, list):
- for content in result.message.content:
- response += content.data
- else:
- response += result.message.content
- if not result.message.content:
- result.message.content = ""
- self.queue_manager.publish(
- QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
- )
- yield LLMResultChunk(
- model=model_instance.model,
- prompt_messages=result.prompt_messages,
- system_fingerprint=result.system_fingerprint,
- delta=LLMResultChunkDelta(
- index=0,
- message=result.message,
- usage=result.usage,
- ),
- )
- assistant_message = AssistantPromptMessage(content="", tool_calls=[])
- if tool_calls:
- assistant_message.tool_calls = [
- AssistantPromptMessage.ToolCall(
- id=tool_call[0],
- type="function",
- function=AssistantPromptMessage.ToolCall.ToolCallFunction(
- name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False)
- ),
- )
- for tool_call in tool_calls
- ]
- else:
- assistant_message.content = response
- self._current_thoughts.append(assistant_message)
- # save thought
- self.save_agent_thought(
- agent_thought=agent_thought,
- tool_name=tool_call_names,
- tool_input=tool_call_inputs,
- thought=response,
- tool_invoke_meta=None,
- observation=None,
- answer=response,
- messages_ids=[],
- llm_usage=current_llm_usage,
- )
- self.queue_manager.publish(
- QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
- )
- final_answer += response + "\n"
- # call tools
- tool_responses = []
- for tool_call_id, tool_call_name, tool_call_args in tool_calls:
- tool_instance = tool_instances.get(tool_call_name)
- if not tool_instance:
- tool_response = {
- "tool_call_id": tool_call_id,
- "tool_call_name": tool_call_name,
- "tool_response": f"there is not a tool named {tool_call_name}",
- "meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(),
- }
- else:
- # invoke tool
- tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
- tool=tool_instance,
- tool_parameters=tool_call_args,
- user_id=self.user_id,
- tenant_id=self.tenant_id,
- message=self.message,
- invoke_from=self.application_generate_entity.invoke_from,
- agent_tool_callback=self.agent_callback,
- trace_manager=trace_manager,
- )
- # publish files
- for message_file_id, save_as in message_files:
- if save_as:
- self.variables_pool.set_file(tool_name=tool_call_name, value=message_file_id, name=save_as)
- # publish message file
- self.queue_manager.publish(
- QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
- )
- # add message file ids
- message_file_ids.append(message_file_id)
- tool_response = {
- "tool_call_id": tool_call_id,
- "tool_call_name": tool_call_name,
- "tool_response": tool_invoke_response,
- "meta": tool_invoke_meta.to_dict(),
- }
- tool_responses.append(tool_response)
- if tool_response["tool_response"] is not None:
- self._current_thoughts.append(
- ToolPromptMessage(
- content=tool_response["tool_response"],
- tool_call_id=tool_call_id,
- name=tool_call_name,
- )
- )
- if len(tool_responses) > 0:
- # save agent thought
- self.save_agent_thought(
- agent_thought=agent_thought,
- tool_name=None,
- tool_input=None,
- thought=None,
- tool_invoke_meta={
- tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses
- },
- observation={
- tool_response["tool_call_name"]: tool_response["tool_response"]
- for tool_response in tool_responses
- },
- answer=None,
- messages_ids=message_file_ids,
- )
- self.queue_manager.publish(
- QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
- )
- # update prompt tool
- for prompt_tool in prompt_messages_tools:
- self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
- iteration_step += 1
- self.update_db_variables(self.variables_pool, self.db_variables_pool)
- # publish end event
- self.queue_manager.publish(
- QueueMessageEndEvent(
- llm_result=LLMResult(
- model=model_instance.model,
- prompt_messages=prompt_messages,
- message=AssistantPromptMessage(content=final_answer),
- usage=llm_usage["usage"] or LLMUsage.empty_usage(),
- system_fingerprint="",
- )
- ),
- PublishFrom.APPLICATION_MANAGER,
- )
- def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
- """
- Check if there is any tool call in llm result chunk
- """
- if llm_result_chunk.delta.message.tool_calls:
- return True
- return False
- def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
- """
- Check if there is any blocking tool call in llm result
- """
- if llm_result.message.tool_calls:
- return True
- return False
- def extract_tool_calls(
- self, llm_result_chunk: LLMResultChunk
- ) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
- """
- Extract tool calls from llm result chunk
- Returns:
- List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
- """
- tool_calls = []
- for prompt_message in llm_result_chunk.delta.message.tool_calls:
- args = {}
- if prompt_message.function.arguments != "":
- args = json.loads(prompt_message.function.arguments)
- tool_calls.append(
- (
- prompt_message.id,
- prompt_message.function.name,
- args,
- )
- )
- return tool_calls
- def extract_blocking_tool_calls(self, llm_result: LLMResult) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
- """
- Extract blocking tool calls from llm result
- Returns:
- List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
- """
- tool_calls = []
- for prompt_message in llm_result.message.tool_calls:
- args = {}
- if prompt_message.function.arguments != "":
- args = json.loads(prompt_message.function.arguments)
- tool_calls.append(
- (
- prompt_message.id,
- prompt_message.function.name,
- args,
- )
- )
- return tool_calls
- def _init_system_message(
- self, prompt_template: str, prompt_messages: Optional[list[PromptMessage]] = None
- ) -> list[PromptMessage]:
- """
- Initialize system message
- """
- if not prompt_messages and prompt_template:
- return [
- SystemPromptMessage(content=prompt_template),
- ]
- if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
- prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
- return prompt_messages
- def _organize_user_query(self, query, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
- """
- Organize user query
- """
- if self.files:
- prompt_message_contents: list[PromptMessageContent] = []
- prompt_message_contents.append(TextPromptMessageContent(data=query))
- # get image detail config
- image_detail_config = (
- self.application_generate_entity.file_upload_config.image_config.detail
- if (
- self.application_generate_entity.file_upload_config
- and self.application_generate_entity.file_upload_config.image_config
- )
- else None
- )
- image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
- for file in self.files:
- prompt_message_contents.append(
- file_manager.to_prompt_message_content(
- file,
- image_detail_config=image_detail_config,
- )
- )
- prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
- else:
- prompt_messages.append(UserPromptMessage(content=query))
- return prompt_messages
- def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
- """
- As for now, gpt supports both fc and vision at the first iteration.
- We need to remove the image messages from the prompt messages at the first iteration.
- """
- prompt_messages = deepcopy(prompt_messages)
- for prompt_message in prompt_messages:
- if isinstance(prompt_message, UserPromptMessage):
- if isinstance(prompt_message.content, list):
- prompt_message.content = "\n".join(
- [
- content.data
- if content.type == PromptMessageContentType.TEXT
- else "[image]"
- if content.type == PromptMessageContentType.IMAGE
- else "[file]"
- for content in prompt_message.content
- ]
- )
- return prompt_messages
- def _organize_prompt_messages(self):
- prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
- self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
- query_prompt_messages = self._organize_user_query(self.query, [])
- self.history_prompt_messages = AgentHistoryPromptTransform(
- model_config=self.model_config,
- prompt_messages=[*query_prompt_messages, *self._current_thoughts],
- history_messages=self.history_prompt_messages,
- memory=self.memory,
- ).get_prompt()
- prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
- if len(self._current_thoughts) != 0:
- # clear messages after the first iteration
- prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
- return prompt_messages
|