base_agent_runner.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535
  1. import json
  2. import logging
  3. import uuid
  4. from collections.abc import Mapping, Sequence
  5. from datetime import datetime, timezone
  6. from typing import Optional, Union, cast
  7. from core.agent.entities import AgentEntity, AgentToolEntity
  8. from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
  9. from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
  10. from core.app.apps.base_app_queue_manager import AppQueueManager
  11. from core.app.apps.base_app_runner import AppRunner
  12. from core.app.entities.app_invoke_entities import (
  13. AgentChatAppGenerateEntity,
  14. ModelConfigWithCredentialsEntity,
  15. )
  16. from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
  17. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  18. from core.file import file_manager
  19. from core.memory.token_buffer_memory import TokenBufferMemory
  20. from core.model_manager import ModelInstance
  21. from core.model_runtime.entities import (
  22. AssistantPromptMessage,
  23. LLMUsage,
  24. PromptMessage,
  25. PromptMessageContent,
  26. PromptMessageTool,
  27. SystemPromptMessage,
  28. TextPromptMessageContent,
  29. ToolPromptMessage,
  30. UserPromptMessage,
  31. )
  32. from core.model_runtime.entities.message_entities import ImagePromptMessageContent
  33. from core.model_runtime.entities.model_entities import ModelFeature
  34. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  35. from core.model_runtime.utils.encoders import jsonable_encoder
  36. from core.prompt.utils.extract_thread_messages import extract_thread_messages
  37. from core.tools.entities.tool_entities import (
  38. ToolParameter,
  39. ToolRuntimeVariablePool,
  40. )
  41. from core.tools.tool.dataset_retriever_tool import DatasetRetrieverTool
  42. from core.tools.tool.tool import Tool
  43. from core.tools.tool_manager import ToolManager
  44. from extensions.ext_database import db
  45. from factories import file_factory
  46. from models.model import Conversation, Message, MessageAgentThought, MessageFile
  47. from models.tools import ToolConversationVariables
  48. logger = logging.getLogger(__name__)
  49. class BaseAgentRunner(AppRunner):
  50. def __init__(
  51. self,
  52. tenant_id: str,
  53. application_generate_entity: AgentChatAppGenerateEntity,
  54. conversation: Conversation,
  55. app_config: AgentChatAppConfig,
  56. model_config: ModelConfigWithCredentialsEntity,
  57. config: AgentEntity,
  58. queue_manager: AppQueueManager,
  59. message: Message,
  60. user_id: str,
  61. memory: Optional[TokenBufferMemory] = None,
  62. prompt_messages: Optional[list[PromptMessage]] = None,
  63. variables_pool: Optional[ToolRuntimeVariablePool] = None,
  64. db_variables: Optional[ToolConversationVariables] = None,
  65. model_instance: ModelInstance | None = None,
  66. ) -> None:
  67. self.tenant_id = tenant_id
  68. self.application_generate_entity = application_generate_entity
  69. self.conversation = conversation
  70. self.app_config = app_config
  71. self.model_config = model_config
  72. self.config = config
  73. self.queue_manager = queue_manager
  74. self.message = message
  75. self.user_id = user_id
  76. self.memory = memory
  77. self.history_prompt_messages = self.organize_agent_history(prompt_messages=prompt_messages or [])
  78. self.variables_pool = variables_pool
  79. self.db_variables_pool = db_variables
  80. self.model_instance = model_instance
  81. # init callback
  82. self.agent_callback = DifyAgentCallbackHandler()
  83. # init dataset tools
  84. hit_callback = DatasetIndexToolCallbackHandler(
  85. queue_manager=queue_manager,
  86. app_id=self.app_config.app_id,
  87. message_id=message.id,
  88. user_id=user_id,
  89. invoke_from=self.application_generate_entity.invoke_from,
  90. )
  91. self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
  92. tenant_id=tenant_id,
  93. dataset_ids=app_config.dataset.dataset_ids if app_config.dataset else [],
  94. retrieve_config=app_config.dataset.retrieve_config if app_config.dataset else None,
  95. return_resource=app_config.additional_features.show_retrieve_source,
  96. invoke_from=application_generate_entity.invoke_from,
  97. hit_callback=hit_callback,
  98. )
  99. # get how many agent thoughts have been created
  100. self.agent_thought_count = (
  101. db.session.query(MessageAgentThought)
  102. .filter(
  103. MessageAgentThought.message_id == self.message.id,
  104. )
  105. .count()
  106. )
  107. db.session.close()
  108. # check if model supports stream tool call
  109. llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
  110. model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
  111. if model_schema and ModelFeature.STREAM_TOOL_CALL in (model_schema.features or []):
  112. self.stream_tool_call = True
  113. else:
  114. self.stream_tool_call = False
  115. # check if model supports vision
  116. if model_schema and ModelFeature.VISION in (model_schema.features or []):
  117. self.files = application_generate_entity.files
  118. else:
  119. self.files = []
  120. self.query = None
  121. self._current_thoughts: list[PromptMessage] = []
  122. def _repack_app_generate_entity(
  123. self, app_generate_entity: AgentChatAppGenerateEntity
  124. ) -> AgentChatAppGenerateEntity:
  125. """
  126. Repack app generate entity
  127. """
  128. if app_generate_entity.app_config.prompt_template.simple_prompt_template is None:
  129. app_generate_entity.app_config.prompt_template.simple_prompt_template = ""
  130. return app_generate_entity
  131. def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> tuple[PromptMessageTool, Tool]:
  132. """
  133. convert tool to prompt message tool
  134. """
  135. tool_entity = ToolManager.get_agent_tool_runtime(
  136. tenant_id=self.tenant_id,
  137. app_id=self.app_config.app_id,
  138. agent_tool=tool,
  139. invoke_from=self.application_generate_entity.invoke_from,
  140. )
  141. tool_entity.load_variables(self.variables_pool)
  142. message_tool = PromptMessageTool(
  143. name=tool.tool_name,
  144. description=tool_entity.description.llm,
  145. parameters={
  146. "type": "object",
  147. "properties": {},
  148. "required": [],
  149. },
  150. )
  151. parameters = tool_entity.get_all_runtime_parameters()
  152. for parameter in parameters:
  153. if parameter.form != ToolParameter.ToolParameterForm.LLM:
  154. continue
  155. parameter_type = parameter.type.as_normal_type()
  156. if parameter.type in {
  157. ToolParameter.ToolParameterType.SYSTEM_FILES,
  158. ToolParameter.ToolParameterType.FILE,
  159. ToolParameter.ToolParameterType.FILES,
  160. }:
  161. continue
  162. enum = []
  163. if parameter.type == ToolParameter.ToolParameterType.SELECT:
  164. enum = [option.value for option in parameter.options]
  165. message_tool.parameters["properties"][parameter.name] = {
  166. "type": parameter_type,
  167. "description": parameter.llm_description or "",
  168. }
  169. if len(enum) > 0:
  170. message_tool.parameters["properties"][parameter.name]["enum"] = enum
  171. if parameter.required:
  172. message_tool.parameters["required"].append(parameter.name)
  173. return message_tool, tool_entity
  174. def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
  175. """
  176. convert dataset retriever tool to prompt message tool
  177. """
  178. prompt_tool = PromptMessageTool(
  179. name=tool.identity.name,
  180. description=tool.description.llm,
  181. parameters={
  182. "type": "object",
  183. "properties": {},
  184. "required": [],
  185. },
  186. )
  187. for parameter in tool.get_runtime_parameters():
  188. parameter_type = "string"
  189. prompt_tool.parameters["properties"][parameter.name] = {
  190. "type": parameter_type,
  191. "description": parameter.llm_description or "",
  192. }
  193. if parameter.required:
  194. if parameter.name not in prompt_tool.parameters["required"]:
  195. prompt_tool.parameters["required"].append(parameter.name)
  196. return prompt_tool
  197. def _init_prompt_tools(self) -> tuple[Mapping[str, Tool], Sequence[PromptMessageTool]]:
  198. """
  199. Init tools
  200. """
  201. tool_instances = {}
  202. prompt_messages_tools = []
  203. for tool in self.app_config.agent.tools if self.app_config.agent else []:
  204. try:
  205. prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
  206. except Exception:
  207. # api tool may be deleted
  208. continue
  209. # save tool entity
  210. tool_instances[tool.tool_name] = tool_entity
  211. # save prompt tool
  212. prompt_messages_tools.append(prompt_tool)
  213. # convert dataset tools into ModelRuntime Tool format
  214. for dataset_tool in self.dataset_tools:
  215. prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
  216. # save prompt tool
  217. prompt_messages_tools.append(prompt_tool)
  218. # save tool entity
  219. tool_instances[dataset_tool.identity.name] = dataset_tool
  220. return tool_instances, prompt_messages_tools
  221. def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
  222. """
  223. update prompt message tool
  224. """
  225. # try to get tool runtime parameters
  226. tool_runtime_parameters = tool.get_runtime_parameters() or []
  227. for parameter in tool_runtime_parameters:
  228. if parameter.form != ToolParameter.ToolParameterForm.LLM:
  229. continue
  230. parameter_type = parameter.type.as_normal_type()
  231. if parameter.type in {
  232. ToolParameter.ToolParameterType.SYSTEM_FILES,
  233. ToolParameter.ToolParameterType.FILE,
  234. ToolParameter.ToolParameterType.FILES,
  235. }:
  236. continue
  237. enum = []
  238. if parameter.type == ToolParameter.ToolParameterType.SELECT:
  239. enum = [option.value for option in parameter.options]
  240. prompt_tool.parameters["properties"][parameter.name] = {
  241. "type": parameter_type,
  242. "description": parameter.llm_description or "",
  243. }
  244. if len(enum) > 0:
  245. prompt_tool.parameters["properties"][parameter.name]["enum"] = enum
  246. if parameter.required:
  247. if parameter.name not in prompt_tool.parameters["required"]:
  248. prompt_tool.parameters["required"].append(parameter.name)
  249. return prompt_tool
  250. def create_agent_thought(
  251. self, message_id: str, message: str, tool_name: str, tool_input: str, messages_ids: list[str]
  252. ) -> MessageAgentThought:
  253. """
  254. Create agent thought
  255. """
  256. thought = MessageAgentThought(
  257. message_id=message_id,
  258. message_chain_id=None,
  259. thought="",
  260. tool=tool_name,
  261. tool_labels_str="{}",
  262. tool_meta_str="{}",
  263. tool_input=tool_input,
  264. message=message,
  265. message_token=0,
  266. message_unit_price=0,
  267. message_price_unit=0,
  268. message_files=json.dumps(messages_ids) if messages_ids else "",
  269. answer="",
  270. observation="",
  271. answer_token=0,
  272. answer_unit_price=0,
  273. answer_price_unit=0,
  274. tokens=0,
  275. total_price=0,
  276. position=self.agent_thought_count + 1,
  277. currency="USD",
  278. latency=0,
  279. created_by_role="account",
  280. created_by=self.user_id,
  281. )
  282. db.session.add(thought)
  283. db.session.commit()
  284. db.session.refresh(thought)
  285. db.session.close()
  286. self.agent_thought_count += 1
  287. return thought
  288. def save_agent_thought(
  289. self,
  290. agent_thought: MessageAgentThought,
  291. tool_name: str,
  292. tool_input: Union[str, dict],
  293. thought: str,
  294. observation: Union[str, dict],
  295. tool_invoke_meta: Union[str, dict],
  296. answer: str,
  297. messages_ids: list[str],
  298. llm_usage: LLMUsage = None,
  299. ) -> MessageAgentThought:
  300. """
  301. Save agent thought
  302. """
  303. agent_thought = db.session.query(MessageAgentThought).filter(MessageAgentThought.id == agent_thought.id).first()
  304. if thought is not None:
  305. agent_thought.thought = thought
  306. if tool_name is not None:
  307. agent_thought.tool = tool_name
  308. if tool_input is not None:
  309. if isinstance(tool_input, dict):
  310. try:
  311. tool_input = json.dumps(tool_input, ensure_ascii=False)
  312. except Exception as e:
  313. tool_input = json.dumps(tool_input)
  314. agent_thought.tool_input = tool_input
  315. if observation is not None:
  316. if isinstance(observation, dict):
  317. try:
  318. observation = json.dumps(observation, ensure_ascii=False)
  319. except Exception as e:
  320. observation = json.dumps(observation)
  321. agent_thought.observation = observation
  322. if answer is not None:
  323. agent_thought.answer = answer
  324. if messages_ids is not None and len(messages_ids) > 0:
  325. agent_thought.message_files = json.dumps(messages_ids)
  326. if llm_usage:
  327. agent_thought.message_token = llm_usage.prompt_tokens
  328. agent_thought.message_price_unit = llm_usage.prompt_price_unit
  329. agent_thought.message_unit_price = llm_usage.prompt_unit_price
  330. agent_thought.answer_token = llm_usage.completion_tokens
  331. agent_thought.answer_price_unit = llm_usage.completion_price_unit
  332. agent_thought.answer_unit_price = llm_usage.completion_unit_price
  333. agent_thought.tokens = llm_usage.total_tokens
  334. agent_thought.total_price = llm_usage.total_price
  335. # check if tool labels is not empty
  336. labels = agent_thought.tool_labels or {}
  337. tools = agent_thought.tool.split(";") if agent_thought.tool else []
  338. for tool in tools:
  339. if not tool:
  340. continue
  341. if tool not in labels:
  342. tool_label = ToolManager.get_tool_label(tool)
  343. if tool_label:
  344. labels[tool] = tool_label.to_dict()
  345. else:
  346. labels[tool] = {"en_US": tool, "zh_Hans": tool}
  347. agent_thought.tool_labels_str = json.dumps(labels)
  348. if tool_invoke_meta is not None:
  349. if isinstance(tool_invoke_meta, dict):
  350. try:
  351. tool_invoke_meta = json.dumps(tool_invoke_meta, ensure_ascii=False)
  352. except Exception as e:
  353. tool_invoke_meta = json.dumps(tool_invoke_meta)
  354. agent_thought.tool_meta_str = tool_invoke_meta
  355. db.session.commit()
  356. db.session.close()
  357. def update_db_variables(self, tool_variables: ToolRuntimeVariablePool, db_variables: ToolConversationVariables):
  358. """
  359. convert tool variables to db variables
  360. """
  361. db_variables = (
  362. db.session.query(ToolConversationVariables)
  363. .filter(
  364. ToolConversationVariables.conversation_id == self.message.conversation_id,
  365. )
  366. .first()
  367. )
  368. db_variables.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
  369. db_variables.variables_str = json.dumps(jsonable_encoder(tool_variables.pool))
  370. db.session.commit()
  371. db.session.close()
  372. def organize_agent_history(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
  373. """
  374. Organize agent history
  375. """
  376. result = []
  377. # check if there is a system message in the beginning of the conversation
  378. for prompt_message in prompt_messages:
  379. if isinstance(prompt_message, SystemPromptMessage):
  380. result.append(prompt_message)
  381. messages: list[Message] = (
  382. db.session.query(Message)
  383. .filter(
  384. Message.conversation_id == self.message.conversation_id,
  385. )
  386. .order_by(Message.created_at.desc())
  387. .all()
  388. )
  389. messages = list(reversed(extract_thread_messages(messages)))
  390. for message in messages:
  391. if message.id == self.message.id:
  392. continue
  393. result.append(self.organize_agent_user_prompt(message))
  394. agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
  395. if agent_thoughts:
  396. for agent_thought in agent_thoughts:
  397. tools = agent_thought.tool
  398. if tools:
  399. tools = tools.split(";")
  400. tool_calls: list[AssistantPromptMessage.ToolCall] = []
  401. tool_call_response: list[ToolPromptMessage] = []
  402. try:
  403. tool_inputs = json.loads(agent_thought.tool_input)
  404. except Exception as e:
  405. tool_inputs = {tool: {} for tool in tools}
  406. try:
  407. tool_responses = json.loads(agent_thought.observation)
  408. except Exception as e:
  409. tool_responses = dict.fromkeys(tools, agent_thought.observation)
  410. for tool in tools:
  411. # generate a uuid for tool call
  412. tool_call_id = str(uuid.uuid4())
  413. tool_calls.append(
  414. AssistantPromptMessage.ToolCall(
  415. id=tool_call_id,
  416. type="function",
  417. function=AssistantPromptMessage.ToolCall.ToolCallFunction(
  418. name=tool,
  419. arguments=json.dumps(tool_inputs.get(tool, {})),
  420. ),
  421. )
  422. )
  423. tool_call_response.append(
  424. ToolPromptMessage(
  425. content=tool_responses.get(tool, agent_thought.observation),
  426. name=tool,
  427. tool_call_id=tool_call_id,
  428. )
  429. )
  430. result.extend(
  431. [
  432. AssistantPromptMessage(
  433. content=agent_thought.thought,
  434. tool_calls=tool_calls,
  435. ),
  436. *tool_call_response,
  437. ]
  438. )
  439. if not tools:
  440. result.append(AssistantPromptMessage(content=agent_thought.thought))
  441. else:
  442. if message.answer:
  443. result.append(AssistantPromptMessage(content=message.answer))
  444. db.session.close()
  445. return result
  446. def organize_agent_user_prompt(self, message: Message) -> UserPromptMessage:
  447. files = db.session.query(MessageFile).filter(MessageFile.message_id == message.id).all()
  448. if not files:
  449. return UserPromptMessage(content=message.query)
  450. file_extra_config = FileUploadConfigManager.convert(message.app_model_config.to_dict())
  451. if not file_extra_config:
  452. return UserPromptMessage(content=message.query)
  453. image_detail_config = file_extra_config.image_config.detail if file_extra_config.image_config else None
  454. image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
  455. file_objs = file_factory.build_from_message_files(
  456. message_files=files, tenant_id=self.tenant_id, config=file_extra_config
  457. )
  458. if not file_objs:
  459. return UserPromptMessage(content=message.query)
  460. prompt_message_contents: list[PromptMessageContent] = []
  461. prompt_message_contents.append(TextPromptMessageContent(data=message.query))
  462. for file in file_objs:
  463. prompt_message_contents.append(
  464. file_manager.to_prompt_message_content(
  465. file,
  466. image_detail_config=image_detail_config,
  467. )
  468. )
  469. return UserPromptMessage(content=prompt_message_contents)