| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278 | import datetimeimport jsonimport loggingimport randomimport timeimport uuidfrom typing import Optional, castfrom flask import current_appfrom flask_login import current_userfrom sqlalchemy import funcfrom core.errors.error import LLMBadRequestError, ProviderTokenNotInitErrorfrom core.model_manager import ModelManagerfrom core.model_runtime.entities.model_entities import ModelTypefrom core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModelfrom core.rag.datasource.keyword.keyword_factory import Keywordfrom core.rag.models.document import Document as RAGDocumentfrom events.dataset_event import dataset_was_deletedfrom events.document_event import document_was_deletedfrom extensions.ext_database import dbfrom extensions.ext_redis import redis_clientfrom libs import helperfrom models.account import Accountfrom models.dataset import (    AppDatasetJoin,    Dataset,    DatasetCollectionBinding,    DatasetProcessRule,    DatasetQuery,    Document,    DocumentSegment,)from models.model import UploadFilefrom models.source import DataSourceBindingfrom services.errors.account import NoPermissionErrorfrom services.errors.dataset import DatasetNameDuplicateErrorfrom services.errors.document import DocumentIndexingErrorfrom services.errors.file import FileNotExistsErrorfrom services.feature_service import FeatureModel, FeatureServicefrom services.vector_service import VectorServicefrom tasks.clean_notion_document_task import clean_notion_document_taskfrom tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_taskfrom tasks.delete_segment_from_index_task import delete_segment_from_index_taskfrom tasks.document_indexing_task import document_indexing_taskfrom tasks.document_indexing_update_task import document_indexing_update_taskfrom tasks.recover_document_indexing_task import recover_document_indexing_taskclass DatasetService:    @staticmethod    def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):        if user:            permission_filter = db.or_(Dataset.created_by == user.id,                                       Dataset.permission == 'all_team_members')        else:            permission_filter = Dataset.permission == 'all_team_members'        datasets = Dataset.query.filter(            db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \            .order_by(Dataset.created_at.desc()) \            .paginate(            page=page,            per_page=per_page,            max_per_page=100,            error_out=False        )        return datasets.items, datasets.total    @staticmethod    def get_process_rules(dataset_id):        # get the latest process rule        dataset_process_rule = db.session.query(DatasetProcessRule). \            filter(DatasetProcessRule.dataset_id == dataset_id). \            order_by(DatasetProcessRule.created_at.desc()). \            limit(1). \            one_or_none()        if dataset_process_rule:            mode = dataset_process_rule.mode            rules = dataset_process_rule.rules_dict        else:            mode = DocumentService.DEFAULT_RULES['mode']            rules = DocumentService.DEFAULT_RULES['rules']        return {            'mode': mode,            'rules': rules        }    @staticmethod    def get_datasets_by_ids(ids, tenant_id):        datasets = Dataset.query.filter(Dataset.id.in_(ids),                                        Dataset.tenant_id == tenant_id).paginate(            page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)        return datasets.items, datasets.total    @staticmethod    def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):        # check if dataset name already exists        if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():            raise DatasetNameDuplicateError(                f'Dataset with name {name} already exists.')        embedding_model = None        if indexing_technique == 'high_quality':            model_manager = ModelManager()            embedding_model = model_manager.get_default_model_instance(                tenant_id=tenant_id,                model_type=ModelType.TEXT_EMBEDDING            )        dataset = Dataset(name=name, indexing_technique=indexing_technique)        # dataset = Dataset(name=name, provider=provider, config=config)        dataset.created_by = account.id        dataset.updated_by = account.id        dataset.tenant_id = tenant_id        dataset.embedding_model_provider = embedding_model.provider if embedding_model else None        dataset.embedding_model = embedding_model.model if embedding_model else None        db.session.add(dataset)        db.session.commit()        return dataset    @staticmethod    def get_dataset(dataset_id):        dataset = Dataset.query.filter_by(            id=dataset_id        ).first()        if dataset is None:            return None        else:            return dataset    @staticmethod    def check_dataset_model_setting(dataset):        if dataset.indexing_technique == 'high_quality':            try:                model_manager = ModelManager()                model_manager.get_model_instance(                    tenant_id=dataset.tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model                )            except LLMBadRequestError:                raise ValueError(                    "No Embedding Model available. Please configure a valid provider "                    "in the Settings -> Model Provider.")            except ProviderTokenNotInitError as ex:                raise ValueError(f"The dataset in unavailable, due to: "                                 f"{ex.description}")    @staticmethod    def update_dataset(dataset_id, data, user):        filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}        dataset = DatasetService.get_dataset(dataset_id)        DatasetService.check_dataset_permission(dataset, user)        action = None        if dataset.indexing_technique != data['indexing_technique']:            # if update indexing_technique            if data['indexing_technique'] == 'economy':                action = 'remove'                filtered_data['embedding_model'] = None                filtered_data['embedding_model_provider'] = None                filtered_data['collection_binding_id'] = None            elif data['indexing_technique'] == 'high_quality':                action = 'add'                # get embedding model setting                try:                    model_manager = ModelManager()                    embedding_model = model_manager.get_default_model_instance(                        tenant_id=current_user.current_tenant_id,                        model_type=ModelType.TEXT_EMBEDDING                    )                    filtered_data['embedding_model'] = embedding_model.model                    filtered_data['embedding_model_provider'] = embedding_model.provider                    dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                        embedding_model.provider,                        embedding_model.model                    )                    filtered_data['collection_binding_id'] = dataset_collection_binding.id                except LLMBadRequestError:                    raise ValueError(                        "No Embedding Model available. Please configure a valid provider "                        "in the Settings -> Model Provider.")                except ProviderTokenNotInitError as ex:                    raise ValueError(ex.description)        filtered_data['updated_by'] = user.id        filtered_data['updated_at'] = datetime.datetime.now()        # update Retrieval model        filtered_data['retrieval_model'] = data['retrieval_model']        dataset.query.filter_by(id=dataset_id).update(filtered_data)        db.session.commit()        if action:            deal_dataset_vector_index_task.delay(dataset_id, action)        return dataset    @staticmethod    def delete_dataset(dataset_id, user):        # todo: cannot delete dataset if it is being processed        dataset = DatasetService.get_dataset(dataset_id)        if dataset is None:            return False        DatasetService.check_dataset_permission(dataset, user)        dataset_was_deleted.send(dataset)        db.session.delete(dataset)        db.session.commit()        return True    @staticmethod    def check_dataset_permission(dataset, user):        if dataset.tenant_id != user.current_tenant_id:            logging.debug(                f'User {user.id} does not have permission to access dataset {dataset.id}')            raise NoPermissionError(                'You do not have permission to access this dataset.')        if dataset.permission == 'only_me' and dataset.created_by != user.id:            logging.debug(                f'User {user.id} does not have permission to access dataset {dataset.id}')            raise NoPermissionError(                'You do not have permission to access this dataset.')    @staticmethod    def get_dataset_queries(dataset_id: str, page: int, per_page: int):        dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \            .order_by(db.desc(DatasetQuery.created_at)) \            .paginate(            page=page, per_page=per_page, max_per_page=100, error_out=False        )        return dataset_queries.items, dataset_queries.total    @staticmethod    def get_related_apps(dataset_id: str):        return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \            .order_by(db.desc(AppDatasetJoin.created_at)).all()class DocumentService:    DEFAULT_RULES = {        'mode': 'custom',        'rules': {            'pre_processing_rules': [                {'id': 'remove_extra_spaces', 'enabled': True},                {'id': 'remove_urls_emails', 'enabled': False}            ],            'segmentation': {                'delimiter': '\n',                'max_tokens': 500,                'chunk_overlap': 50            }        }    }    DOCUMENT_METADATA_SCHEMA = {        "book": {            "title": str,            "language": str,            "author": str,            "publisher": str,            "publication_date": str,            "isbn": str,            "category": str,        },        "web_page": {            "title": str,            "url": str,            "language": str,            "publish_date": str,            "author/publisher": str,            "topic/keywords": str,            "description": str,        },        "paper": {            "title": str,            "language": str,            "author": str,            "publish_date": str,            "journal/conference_name": str,            "volume/issue/page_numbers": str,            "doi": str,            "topic/keywords": str,            "abstract": str,        },        "social_media_post": {            "platform": str,            "author/username": str,            "publish_date": str,            "post_url": str,            "topic/tags": str,        },        "wikipedia_entry": {            "title": str,            "language": str,            "web_page_url": str,            "last_edit_date": str,            "editor/contributor": str,            "summary/introduction": str,        },        "personal_document": {            "title": str,            "author": str,            "creation_date": str,            "last_modified_date": str,            "document_type": str,            "tags/category": str,        },        "business_document": {            "title": str,            "author": str,            "creation_date": str,            "last_modified_date": str,            "document_type": str,            "department/team": str,        },        "im_chat_log": {            "chat_platform": str,            "chat_participants/group_name": str,            "start_date": str,            "end_date": str,            "summary": str,        },        "synced_from_notion": {            "title": str,            "language": str,            "author/creator": str,            "creation_date": str,            "last_modified_date": str,            "notion_page_link": str,            "category/tags": str,            "description": str,        },        "synced_from_github": {            "repository_name": str,            "repository_description": str,            "repository_owner/organization": str,            "code_filename": str,            "code_file_path": str,            "programming_language": str,            "github_link": str,            "open_source_license": str,            "commit_date": str,            "commit_author": str,        },        "others": dict    }    @staticmethod    def get_document(dataset_id: str, document_id: str) -> Optional[Document]:        document = db.session.query(Document).filter(            Document.id == document_id,            Document.dataset_id == dataset_id        ).first()        return document    @staticmethod    def get_document_by_id(document_id: str) -> Optional[Document]:        document = db.session.query(Document).filter(            Document.id == document_id        ).first()        return document    @staticmethod    def get_document_by_dataset_id(dataset_id: str) -> list[Document]:        documents = db.session.query(Document).filter(            Document.dataset_id == dataset_id,            Document.enabled == True        ).all()        return documents    @staticmethod    def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:        documents = db.session.query(Document).filter(            Document.batch == batch,            Document.dataset_id == dataset_id,            Document.tenant_id == current_user.current_tenant_id        ).all()        return documents    @staticmethod    def get_document_file_detail(file_id: str):        file_detail = db.session.query(UploadFile). \            filter(UploadFile.id == file_id). \            one_or_none()        return file_detail    @staticmethod    def check_archived(document):        if document.archived:            return True        else:            return False    @staticmethod    def delete_document(document):        # trigger document_was_deleted signal        document_was_deleted.send(document.id, dataset_id=document.dataset_id, doc_form=document.doc_form)        db.session.delete(document)        db.session.commit()    @staticmethod    def pause_document(document):        if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:            raise DocumentIndexingError()        # update document to be paused        document.is_paused = True        document.paused_by = current_user.id        document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)        db.session.add(document)        db.session.commit()        # set document paused flag        indexing_cache_key = 'document_{}_is_paused'.format(document.id)        redis_client.setnx(indexing_cache_key, "True")    @staticmethod    def recover_document(document):        if not document.is_paused:            raise DocumentIndexingError()        # update document to be recover        document.is_paused = False        document.paused_by = None        document.paused_at = None        db.session.add(document)        db.session.commit()        # delete paused flag        indexing_cache_key = 'document_{}_is_paused'.format(document.id)        redis_client.delete(indexing_cache_key)        # trigger async task        recover_document_indexing_task.delay(document.dataset_id, document.id)    @staticmethod    def get_documents_position(dataset_id):        document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()        if document:            return document.position + 1        else:            return 1    @staticmethod    def save_document_with_dataset_id(dataset: Dataset, document_data: dict,                                      account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,                                      created_from: str = 'web'):        # check document limit        features = FeatureService.get_features(current_user.current_tenant_id)        if features.billing.enabled:            if 'original_document_id' not in document_data or not document_data['original_document_id']:                count = 0                if document_data["data_source"]["type"] == "upload_file":                    upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']                    count = len(upload_file_list)                elif document_data["data_source"]["type"] == "notion_import":                    notion_info_list = document_data["data_source"]['info_list']['notion_info_list']                    for notion_info in notion_info_list:                        count = count + len(notion_info['pages'])                batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])                if count > batch_upload_limit:                    raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")                DocumentService.check_documents_upload_quota(count, features)        # if dataset is empty, update dataset data_source_type        if not dataset.data_source_type:            dataset.data_source_type = document_data["data_source"]["type"]        if not dataset.indexing_technique:            if 'indexing_technique' not in document_data \                    or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:                raise ValueError("Indexing technique is required")            dataset.indexing_technique = document_data["indexing_technique"]            if document_data["indexing_technique"] == 'high_quality':                model_manager = ModelManager()                embedding_model = model_manager.get_default_model_instance(                    tenant_id=current_user.current_tenant_id,                    model_type=ModelType.TEXT_EMBEDDING                )                dataset.embedding_model = embedding_model.model                dataset.embedding_model_provider = embedding_model.provider                dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                    embedding_model.provider,                    embedding_model.model                )                dataset.collection_binding_id = dataset_collection_binding.id                if not dataset.retrieval_model:                    default_retrieval_model = {                        'search_method': 'semantic_search',                        'reranking_enable': False,                        'reranking_model': {                            'reranking_provider_name': '',                            'reranking_model_name': ''                        },                        'top_k': 2,                        'score_threshold_enabled': False                    }                    dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(                        'retrieval_model') else default_retrieval_model        documents = []        batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))        if 'original_document_id' in document_data and document_data["original_document_id"]:            document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)            documents.append(document)        else:            # save process rule            if not dataset_process_rule:                process_rule = document_data["process_rule"]                if process_rule["mode"] == "custom":                    dataset_process_rule = DatasetProcessRule(                        dataset_id=dataset.id,                        mode=process_rule["mode"],                        rules=json.dumps(process_rule["rules"]),                        created_by=account.id                    )                elif process_rule["mode"] == "automatic":                    dataset_process_rule = DatasetProcessRule(                        dataset_id=dataset.id,                        mode=process_rule["mode"],                        rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),                        created_by=account.id                    )                db.session.add(dataset_process_rule)                db.session.commit()            position = DocumentService.get_documents_position(dataset.id)            document_ids = []            if document_data["data_source"]["type"] == "upload_file":                upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']                for file_id in upload_file_list:                    file = db.session.query(UploadFile).filter(                        UploadFile.tenant_id == dataset.tenant_id,                        UploadFile.id == file_id                    ).first()                    # raise error if file not found                    if not file:                        raise FileNotExistsError()                    file_name = file.name                    data_source_info = {                        "upload_file_id": file_id,                    }                    document = DocumentService.build_document(dataset, dataset_process_rule.id,                                                              document_data["data_source"]["type"],                                                              document_data["doc_form"],                                                              document_data["doc_language"],                                                              data_source_info, created_from, position,                                                              account, file_name, batch)                    db.session.add(document)                    db.session.flush()                    document_ids.append(document.id)                    documents.append(document)                    position += 1            elif document_data["data_source"]["type"] == "notion_import":                notion_info_list = document_data["data_source"]['info_list']['notion_info_list']                exist_page_ids = []                exist_document = dict()                documents = Document.query.filter_by(                    dataset_id=dataset.id,                    tenant_id=current_user.current_tenant_id,                    data_source_type='notion_import',                    enabled=True                ).all()                if documents:                    for document in documents:                        data_source_info = json.loads(document.data_source_info)                        exist_page_ids.append(data_source_info['notion_page_id'])                        exist_document[data_source_info['notion_page_id']] = document.id                for notion_info in notion_info_list:                    workspace_id = notion_info['workspace_id']                    data_source_binding = DataSourceBinding.query.filter(                        db.and_(                            DataSourceBinding.tenant_id == current_user.current_tenant_id,                            DataSourceBinding.provider == 'notion',                            DataSourceBinding.disabled == False,                            DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'                        )                    ).first()                    if not data_source_binding:                        raise ValueError('Data source binding not found.')                    for page in notion_info['pages']:                        if page['page_id'] not in exist_page_ids:                            data_source_info = {                                "notion_workspace_id": workspace_id,                                "notion_page_id": page['page_id'],                                "notion_page_icon": page['page_icon'],                                "type": page['type']                            }                            document = DocumentService.build_document(dataset, dataset_process_rule.id,                                                                      document_data["data_source"]["type"],                                                                      document_data["doc_form"],                                                                      document_data["doc_language"],                                                                      data_source_info, created_from, position,                                                                      account, page['page_name'], batch)                            db.session.add(document)                            db.session.flush()                            document_ids.append(document.id)                            documents.append(document)                            position += 1                        else:                            exist_document.pop(page['page_id'])                # delete not selected documents                if len(exist_document) > 0:                    clean_notion_document_task.delay(list(exist_document.values()), dataset.id)            db.session.commit()            # trigger async task            document_indexing_task.delay(dataset.id, document_ids)        return documents, batch    @staticmethod    def check_documents_upload_quota(count: int, features: FeatureModel):        can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size        if count > can_upload_size:            raise ValueError(f'You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded.')    @staticmethod    def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,                       document_language: str, data_source_info: dict, created_from: str, position: int,                       account: Account,                       name: str, batch: str):        document = Document(            tenant_id=dataset.tenant_id,            dataset_id=dataset.id,            position=position,            data_source_type=data_source_type,            data_source_info=json.dumps(data_source_info),            dataset_process_rule_id=process_rule_id,            batch=batch,            name=name,            created_from=created_from,            created_by=account.id,            doc_form=document_form,            doc_language=document_language        )        return document    @staticmethod    def get_tenant_documents_count():        documents_count = Document.query.filter(Document.completed_at.isnot(None),                                                Document.enabled == True,                                                Document.archived == False,                                                Document.tenant_id == current_user.current_tenant_id).count()        return documents_count    @staticmethod    def update_document_with_dataset_id(dataset: Dataset, document_data: dict,                                        account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,                                        created_from: str = 'web'):        DatasetService.check_dataset_model_setting(dataset)        document = DocumentService.get_document(dataset.id, document_data["original_document_id"])        if document.display_status != 'available':            raise ValueError("Document is not available")        # update document name        if 'name' in document_data and document_data['name']:            document.name = document_data['name']        # save process rule        if 'process_rule' in document_data and document_data['process_rule']:            process_rule = document_data["process_rule"]            if process_rule["mode"] == "custom":                dataset_process_rule = DatasetProcessRule(                    dataset_id=dataset.id,                    mode=process_rule["mode"],                    rules=json.dumps(process_rule["rules"]),                    created_by=account.id                )            elif process_rule["mode"] == "automatic":                dataset_process_rule = DatasetProcessRule(                    dataset_id=dataset.id,                    mode=process_rule["mode"],                    rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),                    created_by=account.id                )            db.session.add(dataset_process_rule)            db.session.commit()            document.dataset_process_rule_id = dataset_process_rule.id        # update document data source        if 'data_source' in document_data and document_data['data_source']:            file_name = ''            data_source_info = {}            if document_data["data_source"]["type"] == "upload_file":                upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']                for file_id in upload_file_list:                    file = db.session.query(UploadFile).filter(                        UploadFile.tenant_id == dataset.tenant_id,                        UploadFile.id == file_id                    ).first()                    # raise error if file not found                    if not file:                        raise FileNotExistsError()                    file_name = file.name                    data_source_info = {                        "upload_file_id": file_id,                    }            elif document_data["data_source"]["type"] == "notion_import":                notion_info_list = document_data["data_source"]['info_list']['notion_info_list']                for notion_info in notion_info_list:                    workspace_id = notion_info['workspace_id']                    data_source_binding = DataSourceBinding.query.filter(                        db.and_(                            DataSourceBinding.tenant_id == current_user.current_tenant_id,                            DataSourceBinding.provider == 'notion',                            DataSourceBinding.disabled == False,                            DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'                        )                    ).first()                    if not data_source_binding:                        raise ValueError('Data source binding not found.')                    for page in notion_info['pages']:                        data_source_info = {                            "notion_workspace_id": workspace_id,                            "notion_page_id": page['page_id'],                            "notion_page_icon": page['page_icon'],                            "type": page['type']                        }            document.data_source_type = document_data["data_source"]["type"]            document.data_source_info = json.dumps(data_source_info)            document.name = file_name        # update document to be waiting        document.indexing_status = 'waiting'        document.completed_at = None        document.processing_started_at = None        document.parsing_completed_at = None        document.cleaning_completed_at = None        document.splitting_completed_at = None        document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)        document.created_from = created_from        document.doc_form = document_data['doc_form']        db.session.add(document)        db.session.commit()        # update document segment        update_params = {            DocumentSegment.status: 're_segment'        }        DocumentSegment.query.filter_by(document_id=document.id).update(update_params)        db.session.commit()        # trigger async task        document_indexing_update_task.delay(document.dataset_id, document.id)        return document    @staticmethod    def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):        features = FeatureService.get_features(current_user.current_tenant_id)        if features.billing.enabled:            count = 0            if document_data["data_source"]["type"] == "upload_file":                upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']                count = len(upload_file_list)            elif document_data["data_source"]["type"] == "notion_import":                notion_info_list = document_data["data_source"]['info_list']['notion_info_list']                for notion_info in notion_info_list:                    count = count + len(notion_info['pages'])            batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])            if count > batch_upload_limit:                raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")            DocumentService.check_documents_upload_quota(count, features)        embedding_model = None        dataset_collection_binding_id = None        retrieval_model = None        if document_data['indexing_technique'] == 'high_quality':            model_manager = ModelManager()            embedding_model = model_manager.get_default_model_instance(                tenant_id=current_user.current_tenant_id,                model_type=ModelType.TEXT_EMBEDDING            )            dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                embedding_model.provider,                embedding_model.model            )            dataset_collection_binding_id = dataset_collection_binding.id            if 'retrieval_model' in document_data and document_data['retrieval_model']:                retrieval_model = document_data['retrieval_model']            else:                default_retrieval_model = {                    'search_method': 'semantic_search',                    'reranking_enable': False,                    'reranking_model': {                        'reranking_provider_name': '',                        'reranking_model_name': ''                    },                    'top_k': 2,                    'score_threshold_enabled': False                }                retrieval_model = default_retrieval_model        # save dataset        dataset = Dataset(            tenant_id=tenant_id,            name='',            data_source_type=document_data["data_source"]["type"],            indexing_technique=document_data["indexing_technique"],            created_by=account.id,            embedding_model=embedding_model.model if embedding_model else None,            embedding_model_provider=embedding_model.provider if embedding_model else None,            collection_binding_id=dataset_collection_binding_id,            retrieval_model=retrieval_model        )        db.session.add(dataset)        db.session.flush()        documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)        cut_length = 18        cut_name = documents[0].name[:cut_length]        dataset.name = cut_name + '...'        dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name        db.session.commit()        return dataset, documents, batch    @classmethod    def document_create_args_validate(cls, args: dict):        if 'original_document_id' not in args or not args['original_document_id']:            DocumentService.data_source_args_validate(args)            DocumentService.process_rule_args_validate(args)        else:            if ('data_source' not in args and not args['data_source']) \                    and ('process_rule' not in args and not args['process_rule']):                raise ValueError("Data source or Process rule is required")            else:                if 'data_source' in args and args['data_source']:                    DocumentService.data_source_args_validate(args)                if 'process_rule' in args and args['process_rule']:                    DocumentService.process_rule_args_validate(args)    @classmethod    def data_source_args_validate(cls, args: dict):        if 'data_source' not in args or not args['data_source']:            raise ValueError("Data source is required")        if not isinstance(args['data_source'], dict):            raise ValueError("Data source is invalid")        if 'type' not in args['data_source'] or not args['data_source']['type']:            raise ValueError("Data source type is required")        if args['data_source']['type'] not in Document.DATA_SOURCES:            raise ValueError("Data source type is invalid")        if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:            raise ValueError("Data source info is required")        if args['data_source']['type'] == 'upload_file':            if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][                'file_info_list']:                raise ValueError("File source info is required")        if args['data_source']['type'] == 'notion_import':            if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][                'notion_info_list']:                raise ValueError("Notion source info is required")    @classmethod    def process_rule_args_validate(cls, args: dict):        if 'process_rule' not in args or not args['process_rule']:            raise ValueError("Process rule is required")        if not isinstance(args['process_rule'], dict):            raise ValueError("Process rule is invalid")        if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:            raise ValueError("Process rule mode is required")        if args['process_rule']['mode'] not in DatasetProcessRule.MODES:            raise ValueError("Process rule mode is invalid")        if args['process_rule']['mode'] == 'automatic':            args['process_rule']['rules'] = {}        else:            if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:                raise ValueError("Process rule rules is required")            if not isinstance(args['process_rule']['rules'], dict):                raise ValueError("Process rule rules is invalid")            if 'pre_processing_rules' not in args['process_rule']['rules'] \                    or args['process_rule']['rules']['pre_processing_rules'] is None:                raise ValueError("Process rule pre_processing_rules is required")            if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):                raise ValueError("Process rule pre_processing_rules is invalid")            unique_pre_processing_rule_dicts = {}            for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:                if 'id' not in pre_processing_rule or not pre_processing_rule['id']:                    raise ValueError("Process rule pre_processing_rules id is required")                if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:                    raise ValueError("Process rule pre_processing_rules id is invalid")                if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:                    raise ValueError("Process rule pre_processing_rules enabled is required")                if not isinstance(pre_processing_rule['enabled'], bool):                    raise ValueError("Process rule pre_processing_rules enabled is invalid")                unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule            args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())            if 'segmentation' not in args['process_rule']['rules'] \                    or args['process_rule']['rules']['segmentation'] is None:                raise ValueError("Process rule segmentation is required")            if not isinstance(args['process_rule']['rules']['segmentation'], dict):                raise ValueError("Process rule segmentation is invalid")            if 'separator' not in args['process_rule']['rules']['segmentation'] \                    or not args['process_rule']['rules']['segmentation']['separator']:                raise ValueError("Process rule segmentation separator is required")            if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):                raise ValueError("Process rule segmentation separator is invalid")            if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \                    or not args['process_rule']['rules']['segmentation']['max_tokens']:                raise ValueError("Process rule segmentation max_tokens is required")            if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):                raise ValueError("Process rule segmentation max_tokens is invalid")    @classmethod    def estimate_args_validate(cls, args: dict):        if 'info_list' not in args or not args['info_list']:            raise ValueError("Data source info is required")        if not isinstance(args['info_list'], dict):            raise ValueError("Data info is invalid")        if 'process_rule' not in args or not args['process_rule']:            raise ValueError("Process rule is required")        if not isinstance(args['process_rule'], dict):            raise ValueError("Process rule is invalid")        if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:            raise ValueError("Process rule mode is required")        if args['process_rule']['mode'] not in DatasetProcessRule.MODES:            raise ValueError("Process rule mode is invalid")        if args['process_rule']['mode'] == 'automatic':            args['process_rule']['rules'] = {}        else:            if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:                raise ValueError("Process rule rules is required")            if not isinstance(args['process_rule']['rules'], dict):                raise ValueError("Process rule rules is invalid")            if 'pre_processing_rules' not in args['process_rule']['rules'] \                    or args['process_rule']['rules']['pre_processing_rules'] is None:                raise ValueError("Process rule pre_processing_rules is required")            if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):                raise ValueError("Process rule pre_processing_rules is invalid")            unique_pre_processing_rule_dicts = {}            for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:                if 'id' not in pre_processing_rule or not pre_processing_rule['id']:                    raise ValueError("Process rule pre_processing_rules id is required")                if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:                    raise ValueError("Process rule pre_processing_rules id is invalid")                if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:                    raise ValueError("Process rule pre_processing_rules enabled is required")                if not isinstance(pre_processing_rule['enabled'], bool):                    raise ValueError("Process rule pre_processing_rules enabled is invalid")                unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule            args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())            if 'segmentation' not in args['process_rule']['rules'] \                    or args['process_rule']['rules']['segmentation'] is None:                raise ValueError("Process rule segmentation is required")            if not isinstance(args['process_rule']['rules']['segmentation'], dict):                raise ValueError("Process rule segmentation is invalid")            if 'separator' not in args['process_rule']['rules']['segmentation'] \                    or not args['process_rule']['rules']['segmentation']['separator']:                raise ValueError("Process rule segmentation separator is required")            if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):                raise ValueError("Process rule segmentation separator is invalid")            if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \                    or not args['process_rule']['rules']['segmentation']['max_tokens']:                raise ValueError("Process rule segmentation max_tokens is required")            if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):                raise ValueError("Process rule segmentation max_tokens is invalid")class SegmentService:    @classmethod    def segment_create_args_validate(cls, args: dict, document: Document):        if document.doc_form == 'qa_model':            if 'answer' not in args or not args['answer']:                raise ValueError("Answer is required")            if not args['answer'].strip():                raise ValueError("Answer is empty")        if 'content' not in args or not args['content'] or not args['content'].strip():            raise ValueError("Content is empty")    @classmethod    def create_segment(cls, args: dict, document: Document, dataset: Dataset):        content = args['content']        doc_id = str(uuid.uuid4())        segment_hash = helper.generate_text_hash(content)        tokens = 0        if dataset.indexing_technique == 'high_quality':            model_manager = ModelManager()            embedding_model = model_manager.get_model_instance(                tenant_id=current_user.current_tenant_id,                provider=dataset.embedding_model_provider,                model_type=ModelType.TEXT_EMBEDDING,                model=dataset.embedding_model            )            # calc embedding use tokens            model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)            tokens = model_type_instance.get_num_tokens(                model=embedding_model.model,                credentials=embedding_model.credentials,                texts=[content]            )        lock_name = 'add_segment_lock_document_id_{}'.format(document.id)        with redis_client.lock(lock_name, timeout=600):            max_position = db.session.query(func.max(DocumentSegment.position)).filter(                DocumentSegment.document_id == document.id            ).scalar()            segment_document = DocumentSegment(                tenant_id=current_user.current_tenant_id,                dataset_id=document.dataset_id,                document_id=document.id,                index_node_id=doc_id,                index_node_hash=segment_hash,                position=max_position + 1 if max_position else 1,                content=content,                word_count=len(content),                tokens=tokens,                status='completed',                indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),                completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),                created_by=current_user.id            )            if document.doc_form == 'qa_model':                segment_document.answer = args['answer']            db.session.add(segment_document)            db.session.commit()            # save vector index            try:                VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)            except Exception as e:                logging.exception("create segment index failed")                segment_document.enabled = False                segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                segment_document.status = 'error'                segment_document.error = str(e)                db.session.commit()            segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()            return segment    @classmethod    def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):        lock_name = 'multi_add_segment_lock_document_id_{}'.format(document.id)        with redis_client.lock(lock_name, timeout=600):            embedding_model = None            if dataset.indexing_technique == 'high_quality':                model_manager = ModelManager()                embedding_model = model_manager.get_model_instance(                    tenant_id=current_user.current_tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model                )            max_position = db.session.query(func.max(DocumentSegment.position)).filter(                DocumentSegment.document_id == document.id            ).scalar()            pre_segment_data_list = []            segment_data_list = []            keywords_list = []            for segment_item in segments:                content = segment_item['content']                doc_id = str(uuid.uuid4())                segment_hash = helper.generate_text_hash(content)                tokens = 0                if dataset.indexing_technique == 'high_quality' and embedding_model:                    # calc embedding use tokens                    model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)                    tokens = model_type_instance.get_num_tokens(                        model=embedding_model.model,                        credentials=embedding_model.credentials,                        texts=[content]                    )                segment_document = DocumentSegment(                    tenant_id=current_user.current_tenant_id,                    dataset_id=document.dataset_id,                    document_id=document.id,                    index_node_id=doc_id,                    index_node_hash=segment_hash,                    position=max_position + 1 if max_position else 1,                    content=content,                    word_count=len(content),                    tokens=tokens,                    status='completed',                    indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),                    completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),                    created_by=current_user.id                )                if document.doc_form == 'qa_model':                    segment_document.answer = segment_item['answer']                db.session.add(segment_document)                segment_data_list.append(segment_document)                pre_segment_data_list.append(segment_document)                keywords_list.append(segment_item['keywords'])            try:                # save vector index                VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)            except Exception as e:                logging.exception("create segment index failed")                for segment_document in segment_data_list:                    segment_document.enabled = False                    segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                    segment_document.status = 'error'                    segment_document.error = str(e)            db.session.commit()            return segment_data_list    @classmethod    def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):        indexing_cache_key = 'segment_{}_indexing'.format(segment.id)        cache_result = redis_client.get(indexing_cache_key)        if cache_result is not None:            raise ValueError("Segment is indexing, please try again later")        try:            content = args['content']            if segment.content == content:                if document.doc_form == 'qa_model':                    segment.answer = args['answer']                if 'keywords' in args and args['keywords']:                    segment.keywords = args['keywords']                if 'enabled' in args and args['enabled'] is not None:                    segment.enabled = args['enabled']                db.session.add(segment)                db.session.commit()                # update segment index task                if args['keywords']:                    keyword = Keyword(dataset)                    keyword.delete_by_ids([segment.index_node_id])                    document = RAGDocument(                        page_content=segment.content,                        metadata={                            "doc_id": segment.index_node_id,                            "doc_hash": segment.index_node_hash,                            "document_id": segment.document_id,                            "dataset_id": segment.dataset_id,                        }                    )                    keyword.add_texts([document], keywords_list=[args['keywords']])            else:                segment_hash = helper.generate_text_hash(content)                tokens = 0                if dataset.indexing_technique == 'high_quality':                    model_manager = ModelManager()                    embedding_model = model_manager.get_model_instance(                        tenant_id=current_user.current_tenant_id,                        provider=dataset.embedding_model_provider,                        model_type=ModelType.TEXT_EMBEDDING,                        model=dataset.embedding_model                    )                    # calc embedding use tokens                    model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)                    tokens = model_type_instance.get_num_tokens(                        model=embedding_model.model,                        credentials=embedding_model.credentials,                        texts=[content]                    )                segment.content = content                segment.index_node_hash = segment_hash                segment.word_count = len(content)                segment.tokens = tokens                segment.status = 'completed'                segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                segment.updated_by = current_user.id                segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                if document.doc_form == 'qa_model':                    segment.answer = args['answer']                db.session.add(segment)                db.session.commit()                # update segment vector index                VectorService.update_segment_vector(args['keywords'], segment, dataset)        except Exception as e:            logging.exception("update segment index failed")            segment.enabled = False            segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)            segment.status = 'error'            segment.error = str(e)            db.session.commit()        segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()        return segment    @classmethod    def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):        indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)        cache_result = redis_client.get(indexing_cache_key)        if cache_result is not None:            raise ValueError("Segment is deleting.")        # enabled segment need to delete index        if segment.enabled:            # send delete segment index task            redis_client.setex(indexing_cache_key, 600, 1)            delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)        db.session.delete(segment)        db.session.commit()class DatasetCollectionBindingService:    @classmethod    def get_dataset_collection_binding(cls, provider_name: str, model_name: str,                                       collection_type: str = 'dataset') -> DatasetCollectionBinding:        dataset_collection_binding = db.session.query(DatasetCollectionBinding). \            filter(DatasetCollectionBinding.provider_name == provider_name,                   DatasetCollectionBinding.model_name == model_name,                   DatasetCollectionBinding.type == collection_type). \            order_by(DatasetCollectionBinding.created_at). \            first()        if not dataset_collection_binding:            dataset_collection_binding = DatasetCollectionBinding(                provider_name=provider_name,                model_name=model_name,                collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),                type=collection_type            )            db.session.add(dataset_collection_binding)            db.session.commit()        return dataset_collection_binding    @classmethod    def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str,                                                      collection_type: str = 'dataset') -> DatasetCollectionBinding:        dataset_collection_binding = db.session.query(DatasetCollectionBinding). \            filter(DatasetCollectionBinding.id == collection_binding_id,                   DatasetCollectionBinding.type == collection_type). \            order_by(DatasetCollectionBinding.created_at). \            first()        return dataset_collection_binding
 |