| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273 | from copy import deepcopyfrom datetime import datetime, timezonefrom typing import Unionfrom core.app.entities.app_invoke_entities import InvokeFromfrom core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandlerfrom core.callback_handler.workflow_tool_callback_handler import DifyWorkflowCallbackHandlerfrom core.file.file_obj import FileTransferMethodfrom core.tools.entities.tool_entities import ToolInvokeMessage, ToolInvokeMessageBinary, ToolInvokeMeta, ToolParameterfrom core.tools.errors import (    ToolEngineInvokeError,    ToolInvokeError,    ToolNotFoundError,    ToolNotSupportedError,    ToolParameterValidationError,    ToolProviderCredentialValidationError,    ToolProviderNotFoundError,)from core.tools.tool.tool import Toolfrom core.tools.utils.message_transformer import ToolFileMessageTransformerfrom extensions.ext_database import dbfrom models.model import Message, MessageFileclass ToolEngine:    """    Tool runtime engine take care of the tool executions.    """    @staticmethod    def agent_invoke(tool: Tool, tool_parameters: Union[str, dict],                     user_id: str, tenant_id: str, message: Message, invoke_from: InvokeFrom,                     agent_tool_callback: DifyAgentCallbackHandler) \                        -> tuple[str, list[tuple[MessageFile, bool]], ToolInvokeMeta]:        """        Agent invokes the tool with the given arguments.        """        # check if arguments is a string        if isinstance(tool_parameters, str):            # check if this tool has only one parameter            parameters = [                parameter for parameter in tool.get_runtime_parameters()                 if parameter.form == ToolParameter.ToolParameterForm.LLM            ]            if parameters and len(parameters) == 1:                tool_parameters = {                    parameters[0].name: tool_parameters                }            else:                raise ValueError(f"tool_parameters should be a dict, but got a string: {tool_parameters}")        # invoke the tool        try:            # hit the callback handler            agent_tool_callback.on_tool_start(                tool_name=tool.identity.name,                 tool_inputs=tool_parameters            )            meta, response = ToolEngine._invoke(tool, tool_parameters, user_id)            response = ToolFileMessageTransformer.transform_tool_invoke_messages(                messages=response,                 user_id=user_id,                 tenant_id=tenant_id,                 conversation_id=message.conversation_id            )            # extract binary data from tool invoke message            binary_files = ToolEngine._extract_tool_response_binary(response)            # create message file            message_files = ToolEngine._create_message_files(                tool_messages=binary_files,                agent_message=message,                invoke_from=invoke_from,                user_id=user_id            )            plain_text = ToolEngine._convert_tool_response_to_str(response)            # hit the callback handler            agent_tool_callback.on_tool_end(                tool_name=tool.identity.name,                 tool_inputs=tool_parameters,                 tool_outputs=plain_text            )            # transform tool invoke message to get LLM friendly message            return plain_text, message_files, meta        except ToolProviderCredentialValidationError as e:            error_response = "Please check your tool provider credentials"            agent_tool_callback.on_tool_error(e)        except (            ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError        ) as e:            error_response = f"there is not a tool named {tool.identity.name}"            agent_tool_callback.on_tool_error(e)        except (            ToolParameterValidationError        ) as e:            error_response = f"tool parameters validation error: {e}, please check your tool parameters"            agent_tool_callback.on_tool_error(e)        except ToolInvokeError as e:            error_response = f"tool invoke error: {e}"            agent_tool_callback.on_tool_error(e)        except ToolEngineInvokeError as e:            meta = e.args[0]            error_response = f"tool invoke error: {meta.error}"            agent_tool_callback.on_tool_error(e)            return error_response, [], meta        except Exception as e:            error_response = f"unknown error: {e}"            agent_tool_callback.on_tool_error(e)        return error_response, [], ToolInvokeMeta.error_instance(error_response)    @staticmethod    def workflow_invoke(tool: Tool, tool_parameters: dict,                        user_id: str, workflow_id: str,                         workflow_tool_callback: DifyWorkflowCallbackHandler) \                              -> list[ToolInvokeMessage]:        """        Workflow invokes the tool with the given arguments.        """        try:            # hit the callback handler            workflow_tool_callback.on_tool_start(                tool_name=tool.identity.name,                 tool_inputs=tool_parameters            )            response = tool.invoke(user_id, tool_parameters)            # hit the callback handler            workflow_tool_callback.on_tool_end(                tool_name=tool.identity.name,                 tool_inputs=tool_parameters,                 tool_outputs=response            )            return response        except Exception as e:            workflow_tool_callback.on_tool_error(e)            raise e            @staticmethod    def _invoke(tool: Tool, tool_parameters: dict, user_id: str) \          -> tuple[ToolInvokeMeta, list[ToolInvokeMessage]]:        """        Invoke the tool with the given arguments.        """        started_at = datetime.now(timezone.utc)        meta = ToolInvokeMeta(time_cost=0.0, error=None, tool_config={            'tool_name': tool.identity.name,            'tool_provider': tool.identity.provider,            'tool_provider_type': tool.tool_provider_type().value,            'tool_parameters': deepcopy(tool.runtime.runtime_parameters),            'tool_icon': tool.identity.icon        })        try:            response = tool.invoke(user_id, tool_parameters)        except Exception as e:            meta.error = str(e)            raise ToolEngineInvokeError(meta)        finally:            ended_at = datetime.now(timezone.utc)            meta.time_cost = (ended_at - started_at).total_seconds()        return meta, response        @staticmethod    def _convert_tool_response_to_str(tool_response: list[ToolInvokeMessage]) -> str:        """        Handle tool response        """        result = ''        for response in tool_response:            if response.type == ToolInvokeMessage.MessageType.TEXT:                result += response.message            elif response.type == ToolInvokeMessage.MessageType.LINK:                result += f"result link: {response.message}. please tell user to check it."            elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \                 response.type == ToolInvokeMessage.MessageType.IMAGE:                result += "image has been created and sent to user already, you do not need to create it, just tell the user to check it now."            else:                result += f"tool response: {response.message}."        return result        @staticmethod    def _extract_tool_response_binary(tool_response: list[ToolInvokeMessage]) -> list[ToolInvokeMessageBinary]:        """        Extract tool response binary        """        result = []        for response in tool_response:            if response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \                response.type == ToolInvokeMessage.MessageType.IMAGE:                result.append(ToolInvokeMessageBinary(                    mimetype=response.meta.get('mime_type', 'octet/stream'),                    url=response.message,                    save_as=response.save_as,                ))            elif response.type == ToolInvokeMessage.MessageType.BLOB:                result.append(ToolInvokeMessageBinary(                    mimetype=response.meta.get('mime_type', 'octet/stream'),                    url=response.message,                    save_as=response.save_as,                ))            elif response.type == ToolInvokeMessage.MessageType.LINK:                # check if there is a mime type in meta                if response.meta and 'mime_type' in response.meta:                    result.append(ToolInvokeMessageBinary(                        mimetype=response.meta.get('mime_type', 'octet/stream') if response.meta else 'octet/stream',                        url=response.message,                        save_as=response.save_as,                    ))        return result        @staticmethod    def _create_message_files(        tool_messages: list[ToolInvokeMessageBinary],        agent_message: Message,        invoke_from: InvokeFrom,        user_id: str    ) -> list[tuple[MessageFile, bool]]:        """        Create message file        :param messages: messages        :return: message files, should save as variable        """        result = []        for message in tool_messages:            file_type = 'bin'            if 'image' in message.mimetype:                file_type = 'image'            elif 'video' in message.mimetype:                file_type = 'video'            elif 'audio' in message.mimetype:                file_type = 'audio'            elif 'text' in message.mimetype:                file_type = 'text'            elif 'pdf' in message.mimetype:                file_type = 'pdf'            elif 'zip' in message.mimetype:                file_type = 'archive'            # ...            message_file = MessageFile(                message_id=agent_message.id,                type=file_type,                transfer_method=FileTransferMethod.TOOL_FILE.value,                belongs_to='assistant',                url=message.url,                upload_file_id=None,                created_by_role=('account'if invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else 'end_user'),                created_by=user_id,            )            db.session.add(message_file)            db.session.commit()            db.session.refresh(message_file)            result.append((                message_file,                message.save_as            ))        db.session.close()        return result
 |