retry_document_indexing_task.py 3.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091
  1. import datetime
  2. import logging
  3. import time
  4. import click
  5. from celery import shared_task
  6. from core.indexing_runner import IndexingRunner
  7. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  8. from extensions.ext_database import db
  9. from extensions.ext_redis import redis_client
  10. from models.dataset import Dataset, Document, DocumentSegment
  11. from services.feature_service import FeatureService
  12. @shared_task(queue="dataset")
  13. def retry_document_indexing_task(dataset_id: str, document_ids: list[str]):
  14. """
  15. Async process document
  16. :param dataset_id:
  17. :param document_ids:
  18. Usage: retry_document_indexing_task.delay(dataset_id, document_id)
  19. """
  20. documents = []
  21. start_at = time.perf_counter()
  22. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  23. for document_id in document_ids:
  24. retry_indexing_cache_key = "document_{}_is_retried".format(document_id)
  25. # check document limit
  26. features = FeatureService.get_features(dataset.tenant_id)
  27. try:
  28. if features.billing.enabled:
  29. vector_space = features.vector_space
  30. if 0 < vector_space.limit <= vector_space.size:
  31. raise ValueError(
  32. "Your total number of documents plus the number of uploads have over the limit of "
  33. "your subscription."
  34. )
  35. except Exception as e:
  36. document = (
  37. db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
  38. )
  39. if document:
  40. document.indexing_status = "error"
  41. document.error = str(e)
  42. document.stopped_at = datetime.datetime.utcnow()
  43. db.session.add(document)
  44. db.session.commit()
  45. redis_client.delete(retry_indexing_cache_key)
  46. return
  47. logging.info(click.style("Start retry document: {}".format(document_id), fg="green"))
  48. document = (
  49. db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
  50. )
  51. try:
  52. if document:
  53. # clean old data
  54. index_processor = IndexProcessorFactory(document.doc_form).init_index_processor()
  55. segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all()
  56. if segments:
  57. index_node_ids = [segment.index_node_id for segment in segments]
  58. # delete from vector index
  59. index_processor.clean(dataset, index_node_ids)
  60. for segment in segments:
  61. db.session.delete(segment)
  62. db.session.commit()
  63. document.indexing_status = "parsing"
  64. document.processing_started_at = datetime.datetime.utcnow()
  65. db.session.add(document)
  66. db.session.commit()
  67. indexing_runner = IndexingRunner()
  68. indexing_runner.run([document])
  69. redis_client.delete(retry_indexing_cache_key)
  70. except Exception as ex:
  71. document.indexing_status = "error"
  72. document.error = str(ex)
  73. document.stopped_at = datetime.datetime.utcnow()
  74. db.session.add(document)
  75. db.session.commit()
  76. logging.info(click.style(str(ex), fg="yellow"))
  77. redis_client.delete(retry_indexing_cache_key)
  78. pass
  79. end_at = time.perf_counter()
  80. logging.info(click.style("Retry dataset: {} latency: {}".format(dataset_id, end_at - start_at), fg="green"))