duplicate_document_indexing_task.py 3.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394
  1. import datetime
  2. import logging
  3. import time
  4. import click
  5. from celery import shared_task
  6. from configs import dify_config
  7. from core.indexing_runner import DocumentIsPausedError, IndexingRunner
  8. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  9. from extensions.ext_database import db
  10. from models.dataset import Dataset, Document, DocumentSegment
  11. from services.feature_service import FeatureService
  12. @shared_task(queue="dataset")
  13. def duplicate_document_indexing_task(dataset_id: str, document_ids: list):
  14. """
  15. Async process document
  16. :param dataset_id:
  17. :param document_ids:
  18. Usage: duplicate_document_indexing_task.delay(dataset_id, document_id)
  19. """
  20. documents = []
  21. start_at = time.perf_counter()
  22. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  23. # check document limit
  24. features = FeatureService.get_features(dataset.tenant_id)
  25. try:
  26. if features.billing.enabled:
  27. vector_space = features.vector_space
  28. count = len(document_ids)
  29. batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
  30. if count > batch_upload_limit:
  31. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  32. if 0 < vector_space.limit <= vector_space.size:
  33. raise ValueError(
  34. "Your total number of documents plus the number of uploads have over the limit of "
  35. "your subscription."
  36. )
  37. except Exception as e:
  38. for document_id in document_ids:
  39. document = (
  40. db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
  41. )
  42. if document:
  43. document.indexing_status = "error"
  44. document.error = str(e)
  45. document.stopped_at = datetime.datetime.utcnow()
  46. db.session.add(document)
  47. db.session.commit()
  48. return
  49. for document_id in document_ids:
  50. logging.info(click.style("Start process document: {}".format(document_id), fg="green"))
  51. document = (
  52. db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
  53. )
  54. if document:
  55. # clean old data
  56. index_type = document.doc_form
  57. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  58. segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all()
  59. if segments:
  60. index_node_ids = [segment.index_node_id for segment in segments]
  61. # delete from vector index
  62. index_processor.clean(dataset, index_node_ids)
  63. for segment in segments:
  64. db.session.delete(segment)
  65. db.session.commit()
  66. document.indexing_status = "parsing"
  67. document.processing_started_at = datetime.datetime.utcnow()
  68. documents.append(document)
  69. db.session.add(document)
  70. db.session.commit()
  71. try:
  72. indexing_runner = IndexingRunner()
  73. indexing_runner.run(documents)
  74. end_at = time.perf_counter()
  75. logging.info(click.style("Processed dataset: {} latency: {}".format(dataset_id, end_at - start_at), fg="green"))
  76. except DocumentIsPausedError as ex:
  77. logging.info(click.style(str(ex), fg="yellow"))
  78. except Exception:
  79. pass