12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- import datetime
- import logging
- import time
- import click
- from celery import shared_task
- from configs import dify_config
- from core.indexing_runner import DocumentIsPausedError, IndexingRunner
- from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
- from extensions.ext_database import db
- from models.dataset import Dataset, Document, DocumentSegment
- from services.feature_service import FeatureService
- @shared_task(queue="dataset")
- def duplicate_document_indexing_task(dataset_id: str, document_ids: list):
- """
- Async process document
- :param dataset_id:
- :param document_ids:
- Usage: duplicate_document_indexing_task.delay(dataset_id, document_id)
- """
- documents = []
- start_at = time.perf_counter()
- dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
- # check document limit
- features = FeatureService.get_features(dataset.tenant_id)
- try:
- if features.billing.enabled:
- vector_space = features.vector_space
- count = len(document_ids)
- batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
- if count > batch_upload_limit:
- raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
- if 0 < vector_space.limit <= vector_space.size:
- raise ValueError(
- "Your total number of documents plus the number of uploads have over the limit of "
- "your subscription."
- )
- except Exception as e:
- for document_id in document_ids:
- document = (
- db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
- )
- if document:
- document.indexing_status = "error"
- document.error = str(e)
- document.stopped_at = datetime.datetime.utcnow()
- db.session.add(document)
- db.session.commit()
- return
- for document_id in document_ids:
- logging.info(click.style("Start process document: {}".format(document_id), fg="green"))
- document = (
- db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
- )
- if document:
- # clean old data
- index_type = document.doc_form
- index_processor = IndexProcessorFactory(index_type).init_index_processor()
- segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all()
- if segments:
- index_node_ids = [segment.index_node_id for segment in segments]
- # delete from vector index
- index_processor.clean(dataset, index_node_ids)
- for segment in segments:
- db.session.delete(segment)
- db.session.commit()
- document.indexing_status = "parsing"
- document.processing_started_at = datetime.datetime.utcnow()
- documents.append(document)
- db.session.add(document)
- db.session.commit()
- try:
- indexing_runner = IndexingRunner()
- indexing_runner.run(documents)
- end_at = time.perf_counter()
- logging.info(click.style("Processed dataset: {} latency: {}".format(dataset_id, end_at - start_at), fg="green"))
- except DocumentIsPausedError as ex:
- logging.info(click.style(str(ex), fg="yellow"))
- except Exception:
- pass
|