batch_create_segment_to_index_task.py 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102
  1. import datetime
  2. import logging
  3. import time
  4. import uuid
  5. import click
  6. from celery import shared_task
  7. from sqlalchemy import func
  8. from core.indexing_runner import IndexingRunner
  9. from core.model_manager import ModelManager
  10. from core.model_runtime.entities.model_entities import ModelType
  11. from extensions.ext_database import db
  12. from extensions.ext_redis import redis_client
  13. from libs import helper
  14. from models.dataset import Dataset, Document, DocumentSegment
  15. @shared_task(queue="dataset")
  16. def batch_create_segment_to_index_task(
  17. job_id: str, content: list, dataset_id: str, document_id: str, tenant_id: str, user_id: str
  18. ):
  19. """
  20. Async batch create segment to index
  21. :param job_id:
  22. :param content:
  23. :param dataset_id:
  24. :param document_id:
  25. :param tenant_id:
  26. :param user_id:
  27. Usage: batch_create_segment_to_index_task.delay(segment_id)
  28. """
  29. logging.info(click.style("Start batch create segment jobId: {}".format(job_id), fg="green"))
  30. start_at = time.perf_counter()
  31. indexing_cache_key = "segment_batch_import_{}".format(job_id)
  32. try:
  33. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  34. if not dataset:
  35. raise ValueError("Dataset not exist.")
  36. dataset_document = db.session.query(Document).filter(Document.id == document_id).first()
  37. if not dataset_document:
  38. raise ValueError("Document not exist.")
  39. if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
  40. raise ValueError("Document is not available.")
  41. document_segments = []
  42. embedding_model = None
  43. if dataset.indexing_technique == "high_quality":
  44. model_manager = ModelManager()
  45. embedding_model = model_manager.get_model_instance(
  46. tenant_id=dataset.tenant_id,
  47. provider=dataset.embedding_model_provider,
  48. model_type=ModelType.TEXT_EMBEDDING,
  49. model=dataset.embedding_model,
  50. )
  51. for segment in content:
  52. content = segment["content"]
  53. doc_id = str(uuid.uuid4())
  54. segment_hash = helper.generate_text_hash(content)
  55. # calc embedding use tokens
  56. tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) if embedding_model else 0
  57. max_position = (
  58. db.session.query(func.max(DocumentSegment.position))
  59. .filter(DocumentSegment.document_id == dataset_document.id)
  60. .scalar()
  61. )
  62. segment_document = DocumentSegment(
  63. tenant_id=tenant_id,
  64. dataset_id=dataset_id,
  65. document_id=document_id,
  66. index_node_id=doc_id,
  67. index_node_hash=segment_hash,
  68. position=max_position + 1 if max_position else 1,
  69. content=content,
  70. word_count=len(content),
  71. tokens=tokens,
  72. created_by=user_id,
  73. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  74. status="completed",
  75. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  76. )
  77. if dataset_document.doc_form == "qa_model":
  78. segment_document.answer = segment["answer"]
  79. db.session.add(segment_document)
  80. document_segments.append(segment_document)
  81. # add index to db
  82. indexing_runner = IndexingRunner()
  83. indexing_runner.batch_add_segments(document_segments, dataset)
  84. db.session.commit()
  85. redis_client.setex(indexing_cache_key, 600, "completed")
  86. end_at = time.perf_counter()
  87. logging.info(
  88. click.style("Segment batch created job: {} latency: {}".format(job_id, end_at - start_at), fg="green")
  89. )
  90. except Exception as e:
  91. logging.exception("Segments batch created index failed:{}".format(str(e)))
  92. redis_client.setex(indexing_cache_key, 600, "error")