123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- import datetime
- import logging
- import time
- import uuid
- import click
- from celery import shared_task
- from sqlalchemy import func
- from core.indexing_runner import IndexingRunner
- from core.model_manager import ModelManager
- from core.model_runtime.entities.model_entities import ModelType
- from extensions.ext_database import db
- from extensions.ext_redis import redis_client
- from libs import helper
- from models.dataset import Dataset, Document, DocumentSegment
- @shared_task(queue="dataset")
- def batch_create_segment_to_index_task(
- job_id: str, content: list, dataset_id: str, document_id: str, tenant_id: str, user_id: str
- ):
- """
- Async batch create segment to index
- :param job_id:
- :param content:
- :param dataset_id:
- :param document_id:
- :param tenant_id:
- :param user_id:
- Usage: batch_create_segment_to_index_task.delay(segment_id)
- """
- logging.info(click.style("Start batch create segment jobId: {}".format(job_id), fg="green"))
- start_at = time.perf_counter()
- indexing_cache_key = "segment_batch_import_{}".format(job_id)
- try:
- dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
- if not dataset:
- raise ValueError("Dataset not exist.")
- dataset_document = db.session.query(Document).filter(Document.id == document_id).first()
- if not dataset_document:
- raise ValueError("Document not exist.")
- if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
- raise ValueError("Document is not available.")
- document_segments = []
- embedding_model = None
- if dataset.indexing_technique == "high_quality":
- model_manager = ModelManager()
- embedding_model = model_manager.get_model_instance(
- tenant_id=dataset.tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model,
- )
- for segment in content:
- content = segment["content"]
- doc_id = str(uuid.uuid4())
- segment_hash = helper.generate_text_hash(content)
- # calc embedding use tokens
- tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) if embedding_model else 0
- max_position = (
- db.session.query(func.max(DocumentSegment.position))
- .filter(DocumentSegment.document_id == dataset_document.id)
- .scalar()
- )
- segment_document = DocumentSegment(
- tenant_id=tenant_id,
- dataset_id=dataset_id,
- document_id=document_id,
- index_node_id=doc_id,
- index_node_hash=segment_hash,
- position=max_position + 1 if max_position else 1,
- content=content,
- word_count=len(content),
- tokens=tokens,
- created_by=user_id,
- indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
- status="completed",
- completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
- )
- if dataset_document.doc_form == "qa_model":
- segment_document.answer = segment["answer"]
- db.session.add(segment_document)
- document_segments.append(segment_document)
- # add index to db
- indexing_runner = IndexingRunner()
- indexing_runner.batch_add_segments(document_segments, dataset)
- db.session.commit()
- redis_client.setex(indexing_cache_key, 600, "completed")
- end_at = time.perf_counter()
- logging.info(
- click.style("Segment batch created job: {} latency: {}".format(job_id, end_at - start_at), fg="green")
- )
- except Exception as e:
- logging.exception("Segments batch created index failed:{}".format(str(e)))
- redis_client.setex(indexing_cache_key, 600, "error")
|