123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- import logging
- import time
- import click
- from celery import shared_task
- from werkzeug.exceptions import NotFound
- from core.rag.datasource.vdb.vector_factory import Vector
- from core.rag.models.document import Document
- from extensions.ext_database import db
- from extensions.ext_redis import redis_client
- from models.dataset import Dataset
- from models.model import App, AppAnnotationSetting, MessageAnnotation
- from services.dataset_service import DatasetCollectionBindingService
- @shared_task(queue="dataset")
- def batch_import_annotations_task(job_id: str, content_list: list[dict], app_id: str, tenant_id: str, user_id: str):
- """
- Add annotation to index.
- :param job_id: job_id
- :param content_list: content list
- :param app_id: app id
- :param tenant_id: tenant id
- :param user_id: user_id
- """
- logging.info(click.style("Start batch import annotation: {}".format(job_id), fg="green"))
- start_at = time.perf_counter()
- indexing_cache_key = "app_annotation_batch_import_{}".format(str(job_id))
- # get app info
- app = db.session.query(App).filter(App.id == app_id, App.tenant_id == tenant_id, App.status == "normal").first()
- if app:
- try:
- documents = []
- for content in content_list:
- annotation = MessageAnnotation(
- app_id=app.id, content=content["answer"], question=content["question"], account_id=user_id
- )
- db.session.add(annotation)
- db.session.flush()
- document = Document(
- page_content=content["question"],
- metadata={"annotation_id": annotation.id, "app_id": app_id, "doc_id": annotation.id},
- )
- documents.append(document)
- # if annotation reply is enabled , batch add annotations' index
- app_annotation_setting = (
- db.session.query(AppAnnotationSetting).filter(AppAnnotationSetting.app_id == app_id).first()
- )
- if app_annotation_setting:
- dataset_collection_binding = (
- DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(
- app_annotation_setting.collection_binding_id, "annotation"
- )
- )
- if not dataset_collection_binding:
- raise NotFound("App annotation setting not found")
- dataset = Dataset(
- id=app_id,
- tenant_id=tenant_id,
- indexing_technique="high_quality",
- embedding_model_provider=dataset_collection_binding.provider_name,
- embedding_model=dataset_collection_binding.model_name,
- collection_binding_id=dataset_collection_binding.id,
- )
- vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])
- vector.create(documents, duplicate_check=True)
- db.session.commit()
- redis_client.setex(indexing_cache_key, 600, "completed")
- end_at = time.perf_counter()
- logging.info(
- click.style(
- "Build index successful for batch import annotation: {} latency: {}".format(
- job_id, end_at - start_at
- ),
- fg="green",
- )
- )
- except Exception as e:
- db.session.rollback()
- redis_client.setex(indexing_cache_key, 600, "error")
- indexing_error_msg_key = "app_annotation_batch_import_error_msg_{}".format(str(job_id))
- redis_client.setex(indexing_error_msg_key, 600, str(e))
- logging.exception("Build index for batch import annotations failed")
|