tool_engine.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314
  1. import json
  2. from collections.abc import Mapping
  3. from copy import deepcopy
  4. from datetime import datetime, timezone
  5. from mimetypes import guess_type
  6. from typing import Any, Optional, Union
  7. from yarl import URL
  8. from core.app.entities.app_invoke_entities import InvokeFrom
  9. from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
  10. from core.callback_handler.workflow_tool_callback_handler import DifyWorkflowCallbackHandler
  11. from core.file import FileType
  12. from core.file.models import FileTransferMethod
  13. from core.ops.ops_trace_manager import TraceQueueManager
  14. from core.tools.entities.tool_entities import ToolInvokeMessage, ToolInvokeMessageBinary, ToolInvokeMeta, ToolParameter
  15. from core.tools.errors import (
  16. ToolEngineInvokeError,
  17. ToolInvokeError,
  18. ToolNotFoundError,
  19. ToolNotSupportedError,
  20. ToolParameterValidationError,
  21. ToolProviderCredentialValidationError,
  22. ToolProviderNotFoundError,
  23. )
  24. from core.tools.tool.tool import Tool
  25. from core.tools.tool.workflow_tool import WorkflowTool
  26. from core.tools.utils.message_transformer import ToolFileMessageTransformer
  27. from extensions.ext_database import db
  28. from models.enums import CreatedByRole
  29. from models.model import Message, MessageFile
  30. class ToolEngine:
  31. """
  32. Tool runtime engine take care of the tool executions.
  33. """
  34. @staticmethod
  35. def agent_invoke(
  36. tool: Tool,
  37. tool_parameters: Union[str, dict],
  38. user_id: str,
  39. tenant_id: str,
  40. message: Message,
  41. invoke_from: InvokeFrom,
  42. agent_tool_callback: DifyAgentCallbackHandler,
  43. trace_manager: Optional[TraceQueueManager] = None,
  44. ) -> tuple[str, list[tuple[MessageFile, bool]], ToolInvokeMeta]:
  45. """
  46. Agent invokes the tool with the given arguments.
  47. """
  48. # check if arguments is a string
  49. if isinstance(tool_parameters, str):
  50. # check if this tool has only one parameter
  51. parameters = [
  52. parameter
  53. for parameter in tool.get_runtime_parameters() or []
  54. if parameter.form == ToolParameter.ToolParameterForm.LLM
  55. ]
  56. if parameters and len(parameters) == 1:
  57. tool_parameters = {parameters[0].name: tool_parameters}
  58. else:
  59. raise ValueError(f"tool_parameters should be a dict, but got a string: {tool_parameters}")
  60. # invoke the tool
  61. try:
  62. # hit the callback handler
  63. agent_tool_callback.on_tool_start(tool_name=tool.identity.name, tool_inputs=tool_parameters)
  64. meta, response = ToolEngine._invoke(tool, tool_parameters, user_id)
  65. response = ToolFileMessageTransformer.transform_tool_invoke_messages(
  66. messages=response, user_id=user_id, tenant_id=tenant_id, conversation_id=message.conversation_id
  67. )
  68. # extract binary data from tool invoke message
  69. binary_files = ToolEngine._extract_tool_response_binary(response)
  70. # create message file
  71. message_files = ToolEngine._create_message_files(
  72. tool_messages=binary_files, agent_message=message, invoke_from=invoke_from, user_id=user_id
  73. )
  74. plain_text = ToolEngine._convert_tool_response_to_str(response)
  75. # hit the callback handler
  76. agent_tool_callback.on_tool_end(
  77. tool_name=tool.identity.name,
  78. tool_inputs=tool_parameters,
  79. tool_outputs=plain_text,
  80. message_id=message.id,
  81. trace_manager=trace_manager,
  82. )
  83. # transform tool invoke message to get LLM friendly message
  84. return plain_text, message_files, meta
  85. except ToolProviderCredentialValidationError as e:
  86. error_response = "Please check your tool provider credentials"
  87. agent_tool_callback.on_tool_error(e)
  88. except (ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError) as e:
  89. error_response = f"there is not a tool named {tool.identity.name}"
  90. agent_tool_callback.on_tool_error(e)
  91. except ToolParameterValidationError as e:
  92. error_response = f"tool parameters validation error: {e}, please check your tool parameters"
  93. agent_tool_callback.on_tool_error(e)
  94. except ToolInvokeError as e:
  95. error_response = f"tool invoke error: {e}"
  96. agent_tool_callback.on_tool_error(e)
  97. except ToolEngineInvokeError as e:
  98. meta = e.args[0]
  99. error_response = f"tool invoke error: {meta.error}"
  100. agent_tool_callback.on_tool_error(e)
  101. return error_response, [], meta
  102. except Exception as e:
  103. error_response = f"unknown error: {e}"
  104. agent_tool_callback.on_tool_error(e)
  105. return error_response, [], ToolInvokeMeta.error_instance(error_response)
  106. @staticmethod
  107. def workflow_invoke(
  108. tool: Tool,
  109. tool_parameters: Mapping[str, Any],
  110. user_id: str,
  111. workflow_tool_callback: DifyWorkflowCallbackHandler,
  112. workflow_call_depth: int,
  113. thread_pool_id: Optional[str] = None,
  114. ) -> list[ToolInvokeMessage]:
  115. """
  116. Workflow invokes the tool with the given arguments.
  117. """
  118. try:
  119. # hit the callback handler
  120. assert tool.identity is not None
  121. workflow_tool_callback.on_tool_start(tool_name=tool.identity.name, tool_inputs=tool_parameters)
  122. if isinstance(tool, WorkflowTool):
  123. tool.workflow_call_depth = workflow_call_depth + 1
  124. tool.thread_pool_id = thread_pool_id
  125. if tool.runtime and tool.runtime.runtime_parameters:
  126. tool_parameters = {**tool.runtime.runtime_parameters, **tool_parameters}
  127. response = tool.invoke(user_id=user_id, tool_parameters=tool_parameters)
  128. # hit the callback handler
  129. workflow_tool_callback.on_tool_end(
  130. tool_name=tool.identity.name,
  131. tool_inputs=tool_parameters,
  132. tool_outputs=response,
  133. )
  134. return response
  135. except Exception as e:
  136. workflow_tool_callback.on_tool_error(e)
  137. raise e
  138. @staticmethod
  139. def _invoke(tool: Tool, tool_parameters: dict, user_id: str) -> tuple[ToolInvokeMeta, list[ToolInvokeMessage]]:
  140. """
  141. Invoke the tool with the given arguments.
  142. """
  143. started_at = datetime.now(timezone.utc)
  144. meta = ToolInvokeMeta(
  145. time_cost=0.0,
  146. error=None,
  147. tool_config={
  148. "tool_name": tool.identity.name,
  149. "tool_provider": tool.identity.provider,
  150. "tool_provider_type": tool.tool_provider_type().value,
  151. "tool_parameters": deepcopy(tool.runtime.runtime_parameters),
  152. "tool_icon": tool.identity.icon,
  153. },
  154. )
  155. try:
  156. response = tool.invoke(user_id, tool_parameters)
  157. except Exception as e:
  158. meta.error = str(e)
  159. raise ToolEngineInvokeError(meta)
  160. finally:
  161. ended_at = datetime.now(timezone.utc)
  162. meta.time_cost = (ended_at - started_at).total_seconds()
  163. return meta, response
  164. @staticmethod
  165. def _convert_tool_response_to_str(tool_response: list[ToolInvokeMessage]) -> str:
  166. """
  167. Handle tool response
  168. """
  169. result = ""
  170. for response in tool_response:
  171. if response.type == ToolInvokeMessage.MessageType.TEXT:
  172. result += response.message
  173. elif response.type == ToolInvokeMessage.MessageType.LINK:
  174. result += f"result link: {response.message}. please tell user to check it."
  175. elif response.type in {ToolInvokeMessage.MessageType.IMAGE_LINK, ToolInvokeMessage.MessageType.IMAGE}:
  176. result += (
  177. "image has been created and sent to user already, you do not need to create it,"
  178. " just tell the user to check it now."
  179. )
  180. elif response.type == ToolInvokeMessage.MessageType.JSON:
  181. result += f"tool response: {json.dumps(response.message, ensure_ascii=False)}."
  182. else:
  183. result += f"tool response: {response.message}."
  184. return result
  185. @staticmethod
  186. def _extract_tool_response_binary(tool_response: list[ToolInvokeMessage]) -> list[ToolInvokeMessageBinary]:
  187. """
  188. Extract tool response binary
  189. """
  190. result = []
  191. for response in tool_response:
  192. if response.type in {ToolInvokeMessage.MessageType.IMAGE_LINK, ToolInvokeMessage.MessageType.IMAGE}:
  193. mimetype = None
  194. if response.meta.get("mime_type"):
  195. mimetype = response.meta.get("mime_type")
  196. else:
  197. try:
  198. url = URL(response.message)
  199. extension = url.suffix
  200. guess_type_result, _ = guess_type(f"a{extension}")
  201. if guess_type_result:
  202. mimetype = guess_type_result
  203. except Exception:
  204. pass
  205. if not mimetype:
  206. mimetype = "image/jpeg"
  207. result.append(
  208. ToolInvokeMessageBinary(
  209. mimetype=response.meta.get("mime_type", "image/jpeg"),
  210. url=response.message,
  211. save_as=response.save_as,
  212. )
  213. )
  214. elif response.type == ToolInvokeMessage.MessageType.BLOB:
  215. result.append(
  216. ToolInvokeMessageBinary(
  217. mimetype=response.meta.get("mime_type", "octet/stream"),
  218. url=response.message,
  219. save_as=response.save_as,
  220. )
  221. )
  222. elif response.type == ToolInvokeMessage.MessageType.LINK:
  223. # check if there is a mime type in meta
  224. if response.meta and "mime_type" in response.meta:
  225. result.append(
  226. ToolInvokeMessageBinary(
  227. mimetype=response.meta.get("mime_type", "octet/stream")
  228. if response.meta
  229. else "octet/stream",
  230. url=response.message,
  231. save_as=response.save_as,
  232. )
  233. )
  234. return result
  235. @staticmethod
  236. def _create_message_files(
  237. tool_messages: list[ToolInvokeMessageBinary],
  238. agent_message: Message,
  239. invoke_from: InvokeFrom,
  240. user_id: str,
  241. ) -> list[tuple[Any, str]]:
  242. """
  243. Create message file
  244. :param messages: messages
  245. :return: message files, should save as variable
  246. """
  247. result = []
  248. for message in tool_messages:
  249. if "image" in message.mimetype:
  250. file_type = FileType.IMAGE
  251. elif "video" in message.mimetype:
  252. file_type = FileType.VIDEO
  253. elif "audio" in message.mimetype:
  254. file_type = FileType.AUDIO
  255. elif "text" in message.mimetype or "pdf" in message.mimetype:
  256. file_type = FileType.DOCUMENT
  257. else:
  258. file_type = FileType.CUSTOM
  259. # extract tool file id from url
  260. tool_file_id = message.url.split("/")[-1].split(".")[0]
  261. message_file = MessageFile(
  262. message_id=agent_message.id,
  263. type=file_type,
  264. transfer_method=FileTransferMethod.TOOL_FILE,
  265. belongs_to="assistant",
  266. url=message.url,
  267. upload_file_id=tool_file_id,
  268. created_by_role=(
  269. CreatedByRole.ACCOUNT
  270. if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
  271. else CreatedByRole.END_USER
  272. ),
  273. created_by=user_id,
  274. )
  275. db.session.add(message_file)
  276. db.session.commit()
  277. db.session.refresh(message_file)
  278. result.append((message_file.id, message.save_as))
  279. db.session.close()
  280. return result