indexing_runner.py 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883
  1. import concurrent.futures
  2. import datetime
  3. import json
  4. import logging
  5. import re
  6. import threading
  7. import time
  8. import uuid
  9. from typing import Optional, cast
  10. from flask import Flask, current_app
  11. from flask_login import current_user
  12. from sqlalchemy.orm.exc import ObjectDeletedError
  13. from configs import dify_config
  14. from core.errors.error import ProviderTokenNotInitError
  15. from core.llm_generator.llm_generator import LLMGenerator
  16. from core.model_manager import ModelInstance, ModelManager
  17. from core.model_runtime.entities.model_entities import ModelType
  18. from core.rag.datasource.keyword.keyword_factory import Keyword
  19. from core.rag.docstore.dataset_docstore import DatasetDocumentStore
  20. from core.rag.extractor.entity.extract_setting import ExtractSetting
  21. from core.rag.index_processor.index_processor_base import BaseIndexProcessor
  22. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  23. from core.rag.models.document import Document
  24. from core.rag.splitter.fixed_text_splitter import (
  25. EnhanceRecursiveCharacterTextSplitter,
  26. FixedRecursiveCharacterTextSplitter,
  27. )
  28. from core.rag.splitter.text_splitter import TextSplitter
  29. from extensions.ext_database import db
  30. from extensions.ext_redis import redis_client
  31. from extensions.ext_storage import storage
  32. from libs import helper
  33. from models.dataset import Dataset, DatasetProcessRule, DocumentSegment
  34. from models.dataset import Document as DatasetDocument
  35. from models.model import UploadFile
  36. from services.feature_service import FeatureService
  37. class IndexingRunner:
  38. def __init__(self):
  39. self.storage = storage
  40. self.model_manager = ModelManager()
  41. def run(self, dataset_documents: list[DatasetDocument]):
  42. """Run the indexing process."""
  43. for dataset_document in dataset_documents:
  44. try:
  45. # get dataset
  46. dataset = Dataset.query.filter_by(id=dataset_document.dataset_id).first()
  47. if not dataset:
  48. raise ValueError("no dataset found")
  49. # get the process rule
  50. processing_rule = (
  51. db.session.query(DatasetProcessRule)
  52. .filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
  53. .first()
  54. )
  55. index_type = dataset_document.doc_form
  56. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  57. # extract
  58. text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
  59. # transform
  60. documents = self._transform(
  61. index_processor, dataset, text_docs, dataset_document.doc_language, processing_rule.to_dict()
  62. )
  63. # save segment
  64. self._load_segments(dataset, dataset_document, documents)
  65. # load
  66. self._load(
  67. index_processor=index_processor,
  68. dataset=dataset,
  69. dataset_document=dataset_document,
  70. documents=documents,
  71. )
  72. except DocumentIsPausedError:
  73. raise DocumentIsPausedError("Document paused, document id: {}".format(dataset_document.id))
  74. except ProviderTokenNotInitError as e:
  75. dataset_document.indexing_status = "error"
  76. dataset_document.error = str(e.description)
  77. dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  78. db.session.commit()
  79. except ObjectDeletedError:
  80. logging.warning("Document deleted, document id: {}".format(dataset_document.id))
  81. except Exception as e:
  82. logging.exception("consume document failed")
  83. dataset_document.indexing_status = "error"
  84. dataset_document.error = str(e)
  85. dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  86. db.session.commit()
  87. def run_in_splitting_status(self, dataset_document: DatasetDocument):
  88. """Run the indexing process when the index_status is splitting."""
  89. try:
  90. # get dataset
  91. dataset = Dataset.query.filter_by(id=dataset_document.dataset_id).first()
  92. if not dataset:
  93. raise ValueError("no dataset found")
  94. # get exist document_segment list and delete
  95. document_segments = DocumentSegment.query.filter_by(
  96. dataset_id=dataset.id, document_id=dataset_document.id
  97. ).all()
  98. for document_segment in document_segments:
  99. db.session.delete(document_segment)
  100. db.session.commit()
  101. # get the process rule
  102. processing_rule = (
  103. db.session.query(DatasetProcessRule)
  104. .filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
  105. .first()
  106. )
  107. index_type = dataset_document.doc_form
  108. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  109. # extract
  110. text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
  111. # transform
  112. documents = self._transform(
  113. index_processor, dataset, text_docs, dataset_document.doc_language, processing_rule.to_dict()
  114. )
  115. # save segment
  116. self._load_segments(dataset, dataset_document, documents)
  117. # load
  118. self._load(
  119. index_processor=index_processor, dataset=dataset, dataset_document=dataset_document, documents=documents
  120. )
  121. except DocumentIsPausedError:
  122. raise DocumentIsPausedError("Document paused, document id: {}".format(dataset_document.id))
  123. except ProviderTokenNotInitError as e:
  124. dataset_document.indexing_status = "error"
  125. dataset_document.error = str(e.description)
  126. dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  127. db.session.commit()
  128. except Exception as e:
  129. logging.exception("consume document failed")
  130. dataset_document.indexing_status = "error"
  131. dataset_document.error = str(e)
  132. dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  133. db.session.commit()
  134. def run_in_indexing_status(self, dataset_document: DatasetDocument):
  135. """Run the indexing process when the index_status is indexing."""
  136. try:
  137. # get dataset
  138. dataset = Dataset.query.filter_by(id=dataset_document.dataset_id).first()
  139. if not dataset:
  140. raise ValueError("no dataset found")
  141. # get exist document_segment list and delete
  142. document_segments = DocumentSegment.query.filter_by(
  143. dataset_id=dataset.id, document_id=dataset_document.id
  144. ).all()
  145. documents = []
  146. if document_segments:
  147. for document_segment in document_segments:
  148. # transform segment to node
  149. if document_segment.status != "completed":
  150. document = Document(
  151. page_content=document_segment.content,
  152. metadata={
  153. "doc_id": document_segment.index_node_id,
  154. "doc_hash": document_segment.index_node_hash,
  155. "document_id": document_segment.document_id,
  156. "dataset_id": document_segment.dataset_id,
  157. },
  158. )
  159. documents.append(document)
  160. # build index
  161. # get the process rule
  162. processing_rule = (
  163. db.session.query(DatasetProcessRule)
  164. .filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
  165. .first()
  166. )
  167. index_type = dataset_document.doc_form
  168. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  169. self._load(
  170. index_processor=index_processor, dataset=dataset, dataset_document=dataset_document, documents=documents
  171. )
  172. except DocumentIsPausedError:
  173. raise DocumentIsPausedError("Document paused, document id: {}".format(dataset_document.id))
  174. except ProviderTokenNotInitError as e:
  175. dataset_document.indexing_status = "error"
  176. dataset_document.error = str(e.description)
  177. dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  178. db.session.commit()
  179. except Exception as e:
  180. logging.exception("consume document failed")
  181. dataset_document.indexing_status = "error"
  182. dataset_document.error = str(e)
  183. dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  184. db.session.commit()
  185. def indexing_estimate(
  186. self,
  187. tenant_id: str,
  188. extract_settings: list[ExtractSetting],
  189. tmp_processing_rule: dict,
  190. doc_form: Optional[str] = None,
  191. doc_language: str = "English",
  192. dataset_id: Optional[str] = None,
  193. indexing_technique: str = "economy",
  194. ) -> dict:
  195. """
  196. Estimate the indexing for the document.
  197. """
  198. # check document limit
  199. features = FeatureService.get_features(tenant_id)
  200. if features.billing.enabled:
  201. count = len(extract_settings)
  202. batch_upload_limit = dify_config.BATCH_UPLOAD_LIMIT
  203. if count > batch_upload_limit:
  204. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  205. embedding_model_instance = None
  206. if dataset_id:
  207. dataset = Dataset.query.filter_by(id=dataset_id).first()
  208. if not dataset:
  209. raise ValueError("Dataset not found.")
  210. if dataset.indexing_technique == "high_quality" or indexing_technique == "high_quality":
  211. if dataset.embedding_model_provider:
  212. embedding_model_instance = self.model_manager.get_model_instance(
  213. tenant_id=tenant_id,
  214. provider=dataset.embedding_model_provider,
  215. model_type=ModelType.TEXT_EMBEDDING,
  216. model=dataset.embedding_model,
  217. )
  218. else:
  219. embedding_model_instance = self.model_manager.get_default_model_instance(
  220. tenant_id=tenant_id,
  221. model_type=ModelType.TEXT_EMBEDDING,
  222. )
  223. else:
  224. if indexing_technique == "high_quality":
  225. embedding_model_instance = self.model_manager.get_default_model_instance(
  226. tenant_id=tenant_id,
  227. model_type=ModelType.TEXT_EMBEDDING,
  228. )
  229. preview_texts = []
  230. total_segments = 0
  231. index_type = doc_form
  232. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  233. all_text_docs = []
  234. for extract_setting in extract_settings:
  235. # extract
  236. text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
  237. all_text_docs.extend(text_docs)
  238. processing_rule = DatasetProcessRule(
  239. mode=tmp_processing_rule["mode"], rules=json.dumps(tmp_processing_rule["rules"])
  240. )
  241. # get splitter
  242. splitter = self._get_splitter(processing_rule, embedding_model_instance)
  243. # split to documents
  244. documents = self._split_to_documents_for_estimate(
  245. text_docs=text_docs, splitter=splitter, processing_rule=processing_rule
  246. )
  247. total_segments += len(documents)
  248. for document in documents:
  249. if len(preview_texts) < 5:
  250. preview_texts.append(document.page_content)
  251. if doc_form and doc_form == "qa_model":
  252. if len(preview_texts) > 0:
  253. # qa model document
  254. response = LLMGenerator.generate_qa_document(
  255. current_user.current_tenant_id, preview_texts[0], doc_language
  256. )
  257. document_qa_list = self.format_split_text(response)
  258. return {"total_segments": total_segments * 20, "qa_preview": document_qa_list, "preview": preview_texts}
  259. return {"total_segments": total_segments, "preview": preview_texts}
  260. def _extract(
  261. self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict
  262. ) -> list[Document]:
  263. # load file
  264. if dataset_document.data_source_type not in {"upload_file", "notion_import", "website_crawl"}:
  265. return []
  266. data_source_info = dataset_document.data_source_info_dict
  267. text_docs = []
  268. if dataset_document.data_source_type == "upload_file":
  269. if not data_source_info or "upload_file_id" not in data_source_info:
  270. raise ValueError("no upload file found")
  271. file_detail = (
  272. db.session.query(UploadFile).filter(UploadFile.id == data_source_info["upload_file_id"]).one_or_none()
  273. )
  274. if file_detail:
  275. extract_setting = ExtractSetting(
  276. datasource_type="upload_file", upload_file=file_detail, document_model=dataset_document.doc_form
  277. )
  278. text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
  279. elif dataset_document.data_source_type == "notion_import":
  280. if (
  281. not data_source_info
  282. or "notion_workspace_id" not in data_source_info
  283. or "notion_page_id" not in data_source_info
  284. ):
  285. raise ValueError("no notion import info found")
  286. extract_setting = ExtractSetting(
  287. datasource_type="notion_import",
  288. notion_info={
  289. "notion_workspace_id": data_source_info["notion_workspace_id"],
  290. "notion_obj_id": data_source_info["notion_page_id"],
  291. "notion_page_type": data_source_info["type"],
  292. "document": dataset_document,
  293. "tenant_id": dataset_document.tenant_id,
  294. },
  295. document_model=dataset_document.doc_form,
  296. )
  297. text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
  298. elif dataset_document.data_source_type == "website_crawl":
  299. if (
  300. not data_source_info
  301. or "provider" not in data_source_info
  302. or "url" not in data_source_info
  303. or "job_id" not in data_source_info
  304. ):
  305. raise ValueError("no website import info found")
  306. extract_setting = ExtractSetting(
  307. datasource_type="website_crawl",
  308. website_info={
  309. "provider": data_source_info["provider"],
  310. "job_id": data_source_info["job_id"],
  311. "tenant_id": dataset_document.tenant_id,
  312. "url": data_source_info["url"],
  313. "mode": data_source_info["mode"],
  314. "only_main_content": data_source_info["only_main_content"],
  315. },
  316. document_model=dataset_document.doc_form,
  317. )
  318. text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
  319. # update document status to splitting
  320. self._update_document_index_status(
  321. document_id=dataset_document.id,
  322. after_indexing_status="splitting",
  323. extra_update_params={
  324. DatasetDocument.word_count: sum(len(text_doc.page_content) for text_doc in text_docs),
  325. DatasetDocument.parsing_completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  326. },
  327. )
  328. # replace doc id to document model id
  329. text_docs = cast(list[Document], text_docs)
  330. for text_doc in text_docs:
  331. text_doc.metadata["document_id"] = dataset_document.id
  332. text_doc.metadata["dataset_id"] = dataset_document.dataset_id
  333. return text_docs
  334. @staticmethod
  335. def filter_string(text):
  336. text = re.sub(r"<\|", "<", text)
  337. text = re.sub(r"\|>", ">", text)
  338. text = re.sub(r"[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\xEF\xBF\xBE]", "", text)
  339. # Unicode U+FFFE
  340. text = re.sub("\ufffe", "", text)
  341. return text
  342. @staticmethod
  343. def _get_splitter(
  344. processing_rule: DatasetProcessRule, embedding_model_instance: Optional[ModelInstance]
  345. ) -> TextSplitter:
  346. """
  347. Get the NodeParser object according to the processing rule.
  348. """
  349. if processing_rule.mode == "custom":
  350. # The user-defined segmentation rule
  351. rules = json.loads(processing_rule.rules)
  352. segmentation = rules["segmentation"]
  353. max_segmentation_tokens_length = dify_config.INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH
  354. if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > max_segmentation_tokens_length:
  355. raise ValueError(f"Custom segment length should be between 50 and {max_segmentation_tokens_length}.")
  356. separator = segmentation["separator"]
  357. if separator:
  358. separator = separator.replace("\\n", "\n")
  359. if segmentation.get("chunk_overlap"):
  360. chunk_overlap = segmentation["chunk_overlap"]
  361. else:
  362. chunk_overlap = 0
  363. character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
  364. chunk_size=segmentation["max_tokens"],
  365. chunk_overlap=chunk_overlap,
  366. fixed_separator=separator,
  367. separators=["\n\n", "。", ". ", " ", ""],
  368. embedding_model_instance=embedding_model_instance,
  369. )
  370. else:
  371. # Automatic segmentation
  372. character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder(
  373. chunk_size=DatasetProcessRule.AUTOMATIC_RULES["segmentation"]["max_tokens"],
  374. chunk_overlap=DatasetProcessRule.AUTOMATIC_RULES["segmentation"]["chunk_overlap"],
  375. separators=["\n\n", "。", ". ", " ", ""],
  376. embedding_model_instance=embedding_model_instance,
  377. )
  378. return character_splitter
  379. def _step_split(
  380. self,
  381. text_docs: list[Document],
  382. splitter: TextSplitter,
  383. dataset: Dataset,
  384. dataset_document: DatasetDocument,
  385. processing_rule: DatasetProcessRule,
  386. ) -> list[Document]:
  387. """
  388. Split the text documents into documents and save them to the document segment.
  389. """
  390. documents = self._split_to_documents(
  391. text_docs=text_docs,
  392. splitter=splitter,
  393. processing_rule=processing_rule,
  394. tenant_id=dataset.tenant_id,
  395. document_form=dataset_document.doc_form,
  396. document_language=dataset_document.doc_language,
  397. )
  398. # save node to document segment
  399. doc_store = DatasetDocumentStore(
  400. dataset=dataset, user_id=dataset_document.created_by, document_id=dataset_document.id
  401. )
  402. # add document segments
  403. doc_store.add_documents(documents)
  404. # update document status to indexing
  405. cur_time = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  406. self._update_document_index_status(
  407. document_id=dataset_document.id,
  408. after_indexing_status="indexing",
  409. extra_update_params={
  410. DatasetDocument.cleaning_completed_at: cur_time,
  411. DatasetDocument.splitting_completed_at: cur_time,
  412. },
  413. )
  414. # update segment status to indexing
  415. self._update_segments_by_document(
  416. dataset_document_id=dataset_document.id,
  417. update_params={
  418. DocumentSegment.status: "indexing",
  419. DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  420. },
  421. )
  422. return documents
  423. def _split_to_documents(
  424. self,
  425. text_docs: list[Document],
  426. splitter: TextSplitter,
  427. processing_rule: DatasetProcessRule,
  428. tenant_id: str,
  429. document_form: str,
  430. document_language: str,
  431. ) -> list[Document]:
  432. """
  433. Split the text documents into nodes.
  434. """
  435. all_documents = []
  436. all_qa_documents = []
  437. for text_doc in text_docs:
  438. # document clean
  439. document_text = self._document_clean(text_doc.page_content, processing_rule)
  440. text_doc.page_content = document_text
  441. # parse document to nodes
  442. documents = splitter.split_documents([text_doc])
  443. split_documents = []
  444. for document_node in documents:
  445. if document_node.page_content.strip():
  446. doc_id = str(uuid.uuid4())
  447. hash = helper.generate_text_hash(document_node.page_content)
  448. document_node.metadata["doc_id"] = doc_id
  449. document_node.metadata["doc_hash"] = hash
  450. # delete Splitter character
  451. page_content = document_node.page_content
  452. if page_content.startswith(".") or page_content.startswith("。"):
  453. page_content = page_content[1:]
  454. else:
  455. page_content = page_content
  456. document_node.page_content = page_content
  457. if document_node.page_content:
  458. split_documents.append(document_node)
  459. all_documents.extend(split_documents)
  460. # processing qa document
  461. if document_form == "qa_model":
  462. for i in range(0, len(all_documents), 10):
  463. threads = []
  464. sub_documents = all_documents[i : i + 10]
  465. for doc in sub_documents:
  466. document_format_thread = threading.Thread(
  467. target=self.format_qa_document,
  468. kwargs={
  469. "flask_app": current_app._get_current_object(),
  470. "tenant_id": tenant_id,
  471. "document_node": doc,
  472. "all_qa_documents": all_qa_documents,
  473. "document_language": document_language,
  474. },
  475. )
  476. threads.append(document_format_thread)
  477. document_format_thread.start()
  478. for thread in threads:
  479. thread.join()
  480. return all_qa_documents
  481. return all_documents
  482. def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
  483. format_documents = []
  484. if document_node.page_content is None or not document_node.page_content.strip():
  485. return
  486. with flask_app.app_context():
  487. try:
  488. # qa model document
  489. response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
  490. document_qa_list = self.format_split_text(response)
  491. qa_documents = []
  492. for result in document_qa_list:
  493. qa_document = Document(
  494. page_content=result["question"], metadata=document_node.metadata.model_copy()
  495. )
  496. doc_id = str(uuid.uuid4())
  497. hash = helper.generate_text_hash(result["question"])
  498. qa_document.metadata["answer"] = result["answer"]
  499. qa_document.metadata["doc_id"] = doc_id
  500. qa_document.metadata["doc_hash"] = hash
  501. qa_documents.append(qa_document)
  502. format_documents.extend(qa_documents)
  503. except Exception as e:
  504. logging.exception(e)
  505. all_qa_documents.extend(format_documents)
  506. def _split_to_documents_for_estimate(
  507. self, text_docs: list[Document], splitter: TextSplitter, processing_rule: DatasetProcessRule
  508. ) -> list[Document]:
  509. """
  510. Split the text documents into nodes.
  511. """
  512. all_documents = []
  513. for text_doc in text_docs:
  514. # document clean
  515. document_text = self._document_clean(text_doc.page_content, processing_rule)
  516. text_doc.page_content = document_text
  517. # parse document to nodes
  518. documents = splitter.split_documents([text_doc])
  519. split_documents = []
  520. for document in documents:
  521. if document.page_content is None or not document.page_content.strip():
  522. continue
  523. doc_id = str(uuid.uuid4())
  524. hash = helper.generate_text_hash(document.page_content)
  525. document.metadata["doc_id"] = doc_id
  526. document.metadata["doc_hash"] = hash
  527. split_documents.append(document)
  528. all_documents.extend(split_documents)
  529. return all_documents
  530. @staticmethod
  531. def _document_clean(text: str, processing_rule: DatasetProcessRule) -> str:
  532. """
  533. Clean the document text according to the processing rules.
  534. """
  535. if processing_rule.mode == "automatic":
  536. rules = DatasetProcessRule.AUTOMATIC_RULES
  537. else:
  538. rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
  539. if "pre_processing_rules" in rules:
  540. pre_processing_rules = rules["pre_processing_rules"]
  541. for pre_processing_rule in pre_processing_rules:
  542. if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
  543. # Remove extra spaces
  544. pattern = r"\n{3,}"
  545. text = re.sub(pattern, "\n\n", text)
  546. pattern = r"[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}"
  547. text = re.sub(pattern, " ", text)
  548. elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
  549. # Remove email
  550. pattern = r"([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)"
  551. text = re.sub(pattern, "", text)
  552. # Remove URL
  553. pattern = r"https?://[^\s]+"
  554. text = re.sub(pattern, "", text)
  555. return text
  556. @staticmethod
  557. def format_split_text(text):
  558. regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
  559. matches = re.findall(regex, text, re.UNICODE)
  560. return [{"question": q, "answer": re.sub(r"\n\s*", "\n", a.strip())} for q, a in matches if q and a]
  561. def _load(
  562. self,
  563. index_processor: BaseIndexProcessor,
  564. dataset: Dataset,
  565. dataset_document: DatasetDocument,
  566. documents: list[Document],
  567. ) -> None:
  568. """
  569. insert index and update document/segment status to completed
  570. """
  571. embedding_model_instance = None
  572. if dataset.indexing_technique == "high_quality":
  573. embedding_model_instance = self.model_manager.get_model_instance(
  574. tenant_id=dataset.tenant_id,
  575. provider=dataset.embedding_model_provider,
  576. model_type=ModelType.TEXT_EMBEDDING,
  577. model=dataset.embedding_model,
  578. )
  579. # chunk nodes by chunk size
  580. indexing_start_at = time.perf_counter()
  581. tokens = 0
  582. chunk_size = 10
  583. # create keyword index
  584. create_keyword_thread = threading.Thread(
  585. target=self._process_keyword_index,
  586. args=(current_app._get_current_object(), dataset.id, dataset_document.id, documents),
  587. )
  588. create_keyword_thread.start()
  589. if dataset.indexing_technique == "high_quality":
  590. with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
  591. futures = []
  592. for i in range(0, len(documents), chunk_size):
  593. chunk_documents = documents[i : i + chunk_size]
  594. futures.append(
  595. executor.submit(
  596. self._process_chunk,
  597. current_app._get_current_object(),
  598. index_processor,
  599. chunk_documents,
  600. dataset,
  601. dataset_document,
  602. embedding_model_instance,
  603. )
  604. )
  605. for future in futures:
  606. tokens += future.result()
  607. create_keyword_thread.join()
  608. indexing_end_at = time.perf_counter()
  609. # update document status to completed
  610. self._update_document_index_status(
  611. document_id=dataset_document.id,
  612. after_indexing_status="completed",
  613. extra_update_params={
  614. DatasetDocument.tokens: tokens,
  615. DatasetDocument.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  616. DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
  617. DatasetDocument.error: None,
  618. },
  619. )
  620. @staticmethod
  621. def _process_keyword_index(flask_app, dataset_id, document_id, documents):
  622. with flask_app.app_context():
  623. dataset = Dataset.query.filter_by(id=dataset_id).first()
  624. if not dataset:
  625. raise ValueError("no dataset found")
  626. keyword = Keyword(dataset)
  627. keyword.create(documents)
  628. if dataset.indexing_technique != "high_quality":
  629. document_ids = [document.metadata["doc_id"] for document in documents]
  630. db.session.query(DocumentSegment).filter(
  631. DocumentSegment.document_id == document_id,
  632. DocumentSegment.dataset_id == dataset_id,
  633. DocumentSegment.index_node_id.in_(document_ids),
  634. DocumentSegment.status == "indexing",
  635. ).update(
  636. {
  637. DocumentSegment.status: "completed",
  638. DocumentSegment.enabled: True,
  639. DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  640. }
  641. )
  642. db.session.commit()
  643. def _process_chunk(
  644. self, flask_app, index_processor, chunk_documents, dataset, dataset_document, embedding_model_instance
  645. ):
  646. with flask_app.app_context():
  647. # check document is paused
  648. self._check_document_paused_status(dataset_document.id)
  649. tokens = 0
  650. if embedding_model_instance:
  651. tokens += sum(
  652. embedding_model_instance.get_text_embedding_num_tokens([document.page_content])
  653. for document in chunk_documents
  654. )
  655. # load index
  656. index_processor.load(dataset, chunk_documents, with_keywords=False)
  657. document_ids = [document.metadata["doc_id"] for document in chunk_documents]
  658. db.session.query(DocumentSegment).filter(
  659. DocumentSegment.document_id == dataset_document.id,
  660. DocumentSegment.dataset_id == dataset.id,
  661. DocumentSegment.index_node_id.in_(document_ids),
  662. DocumentSegment.status == "indexing",
  663. ).update(
  664. {
  665. DocumentSegment.status: "completed",
  666. DocumentSegment.enabled: True,
  667. DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  668. }
  669. )
  670. db.session.commit()
  671. return tokens
  672. @staticmethod
  673. def _check_document_paused_status(document_id: str):
  674. indexing_cache_key = "document_{}_is_paused".format(document_id)
  675. result = redis_client.get(indexing_cache_key)
  676. if result:
  677. raise DocumentIsPausedError()
  678. @staticmethod
  679. def _update_document_index_status(
  680. document_id: str, after_indexing_status: str, extra_update_params: Optional[dict] = None
  681. ) -> None:
  682. """
  683. Update the document indexing status.
  684. """
  685. count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
  686. if count > 0:
  687. raise DocumentIsPausedError()
  688. document = DatasetDocument.query.filter_by(id=document_id).first()
  689. if not document:
  690. raise DocumentIsDeletedPausedError()
  691. update_params = {DatasetDocument.indexing_status: after_indexing_status}
  692. if extra_update_params:
  693. update_params.update(extra_update_params)
  694. DatasetDocument.query.filter_by(id=document_id).update(update_params)
  695. db.session.commit()
  696. @staticmethod
  697. def _update_segments_by_document(dataset_document_id: str, update_params: dict) -> None:
  698. """
  699. Update the document segment by document id.
  700. """
  701. DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
  702. db.session.commit()
  703. @staticmethod
  704. def batch_add_segments(segments: list[DocumentSegment], dataset: Dataset):
  705. """
  706. Batch add segments index processing
  707. """
  708. documents = []
  709. for segment in segments:
  710. document = Document(
  711. page_content=segment.content,
  712. metadata={
  713. "doc_id": segment.index_node_id,
  714. "doc_hash": segment.index_node_hash,
  715. "document_id": segment.document_id,
  716. "dataset_id": segment.dataset_id,
  717. },
  718. )
  719. documents.append(document)
  720. # save vector index
  721. index_type = dataset.doc_form
  722. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  723. index_processor.load(dataset, documents)
  724. def _transform(
  725. self,
  726. index_processor: BaseIndexProcessor,
  727. dataset: Dataset,
  728. text_docs: list[Document],
  729. doc_language: str,
  730. process_rule: dict,
  731. ) -> list[Document]:
  732. # get embedding model instance
  733. embedding_model_instance = None
  734. if dataset.indexing_technique == "high_quality":
  735. if dataset.embedding_model_provider:
  736. embedding_model_instance = self.model_manager.get_model_instance(
  737. tenant_id=dataset.tenant_id,
  738. provider=dataset.embedding_model_provider,
  739. model_type=ModelType.TEXT_EMBEDDING,
  740. model=dataset.embedding_model,
  741. )
  742. else:
  743. embedding_model_instance = self.model_manager.get_default_model_instance(
  744. tenant_id=dataset.tenant_id,
  745. model_type=ModelType.TEXT_EMBEDDING,
  746. )
  747. documents = index_processor.transform(
  748. text_docs,
  749. embedding_model_instance=embedding_model_instance,
  750. process_rule=process_rule,
  751. tenant_id=dataset.tenant_id,
  752. doc_language=doc_language,
  753. )
  754. return documents
  755. def _load_segments(self, dataset, dataset_document, documents):
  756. # save node to document segment
  757. doc_store = DatasetDocumentStore(
  758. dataset=dataset, user_id=dataset_document.created_by, document_id=dataset_document.id
  759. )
  760. # add document segments
  761. doc_store.add_documents(documents)
  762. # update document status to indexing
  763. cur_time = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  764. self._update_document_index_status(
  765. document_id=dataset_document.id,
  766. after_indexing_status="indexing",
  767. extra_update_params={
  768. DatasetDocument.cleaning_completed_at: cur_time,
  769. DatasetDocument.splitting_completed_at: cur_time,
  770. },
  771. )
  772. # update segment status to indexing
  773. self._update_segments_by_document(
  774. dataset_document_id=dataset_document.id,
  775. update_params={
  776. DocumentSegment.status: "indexing",
  777. DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  778. },
  779. )
  780. pass
  781. class DocumentIsPausedError(Exception):
  782. pass
  783. class DocumentIsDeletedPausedError(Exception):
  784. pass