moderation.py 1.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647
  1. import logging
  2. import random
  3. from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
  4. from core.model_runtime.errors.invoke import InvokeBadRequestError
  5. from core.model_runtime.model_providers.openai.moderation.moderation import OpenAIModerationModel
  6. from extensions.ext_hosting_provider import hosting_configuration
  7. from models.provider import ProviderType
  8. logger = logging.getLogger(__name__)
  9. def check_moderation(model_config: ModelConfigWithCredentialsEntity, text: str) -> bool:
  10. moderation_config = hosting_configuration.moderation_config
  11. if (
  12. moderation_config
  13. and moderation_config.enabled is True
  14. and "openai" in hosting_configuration.provider_map
  15. and hosting_configuration.provider_map["openai"].enabled is True
  16. ):
  17. using_provider_type = model_config.provider_model_bundle.configuration.using_provider_type
  18. provider_name = model_config.provider
  19. if using_provider_type == ProviderType.SYSTEM and provider_name in moderation_config.providers:
  20. hosting_openai_config = hosting_configuration.provider_map["openai"]
  21. # 2000 text per chunk
  22. length = 2000
  23. text_chunks = [text[i : i + length] for i in range(0, len(text), length)]
  24. if len(text_chunks) == 0:
  25. return True
  26. text_chunk = random.choice(text_chunks)
  27. try:
  28. model_type_instance = OpenAIModerationModel()
  29. moderation_result = model_type_instance.invoke(
  30. model="text-moderation-stable", credentials=hosting_openai_config.credentials, text=text_chunk
  31. )
  32. if moderation_result is True:
  33. return True
  34. except Exception as ex:
  35. logger.exception(ex)
  36. raise InvokeBadRequestError("Rate limit exceeded, please try again later.")
  37. return False