segment.py 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203
  1. from flask_login import current_user
  2. from flask_restful import marshal, reqparse
  3. from werkzeug.exceptions import NotFound
  4. from controllers.service_api import api
  5. from controllers.service_api.app.error import ProviderNotInitializeError
  6. from controllers.service_api.wraps import (
  7. DatasetApiResource,
  8. cloud_edition_billing_knowledge_limit_check,
  9. cloud_edition_billing_resource_check,
  10. )
  11. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.model_manager import ModelManager
  13. from core.model_runtime.entities.model_entities import ModelType
  14. from extensions.ext_database import db
  15. from fields.segment_fields import segment_fields
  16. from models.dataset import Dataset, DocumentSegment
  17. from services.dataset_service import DatasetService, DocumentService, SegmentService
  18. class SegmentApi(DatasetApiResource):
  19. """Resource for segments."""
  20. @cloud_edition_billing_resource_check("vector_space", "dataset")
  21. @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")
  22. def post(self, tenant_id, dataset_id, document_id):
  23. """Create single segment."""
  24. # check dataset
  25. dataset_id = str(dataset_id)
  26. tenant_id = str(tenant_id)
  27. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  28. if not dataset:
  29. raise NotFound("Dataset not found.")
  30. # check document
  31. document_id = str(document_id)
  32. document = DocumentService.get_document(dataset.id, document_id)
  33. if not document:
  34. raise NotFound("Document not found.")
  35. if document.indexing_status != "completed":
  36. raise NotFound("Document is not completed.")
  37. if not document.enabled:
  38. raise NotFound("Document is disabled.")
  39. # check embedding model setting
  40. if dataset.indexing_technique == "high_quality":
  41. try:
  42. model_manager = ModelManager()
  43. model_manager.get_model_instance(
  44. tenant_id=current_user.current_tenant_id,
  45. provider=dataset.embedding_model_provider,
  46. model_type=ModelType.TEXT_EMBEDDING,
  47. model=dataset.embedding_model,
  48. )
  49. except LLMBadRequestError:
  50. raise ProviderNotInitializeError(
  51. "No Embedding Model available. Please configure a valid provider "
  52. "in the Settings -> Model Provider."
  53. )
  54. except ProviderTokenNotInitError as ex:
  55. raise ProviderNotInitializeError(ex.description)
  56. # validate args
  57. parser = reqparse.RequestParser()
  58. parser.add_argument("segments", type=list, required=False, nullable=True, location="json")
  59. args = parser.parse_args()
  60. if args["segments"] is not None:
  61. for args_item in args["segments"]:
  62. SegmentService.segment_create_args_validate(args_item, document)
  63. segments = SegmentService.multi_create_segment(args["segments"], document, dataset)
  64. return {"data": marshal(segments, segment_fields), "doc_form": document.doc_form}, 200
  65. else:
  66. return {"error": "Segments is required"}, 400
  67. def get(self, tenant_id, dataset_id, document_id):
  68. """Create single segment."""
  69. # check dataset
  70. dataset_id = str(dataset_id)
  71. tenant_id = str(tenant_id)
  72. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  73. if not dataset:
  74. raise NotFound("Dataset not found.")
  75. # check document
  76. document_id = str(document_id)
  77. document = DocumentService.get_document(dataset.id, document_id)
  78. if not document:
  79. raise NotFound("Document not found.")
  80. # check embedding model setting
  81. if dataset.indexing_technique == "high_quality":
  82. try:
  83. model_manager = ModelManager()
  84. model_manager.get_model_instance(
  85. tenant_id=current_user.current_tenant_id,
  86. provider=dataset.embedding_model_provider,
  87. model_type=ModelType.TEXT_EMBEDDING,
  88. model=dataset.embedding_model,
  89. )
  90. except LLMBadRequestError:
  91. raise ProviderNotInitializeError(
  92. "No Embedding Model available. Please configure a valid provider "
  93. "in the Settings -> Model Provider."
  94. )
  95. except ProviderTokenNotInitError as ex:
  96. raise ProviderNotInitializeError(ex.description)
  97. parser = reqparse.RequestParser()
  98. parser.add_argument("status", type=str, action="append", default=[], location="args")
  99. parser.add_argument("keyword", type=str, default=None, location="args")
  100. args = parser.parse_args()
  101. status_list = args["status"]
  102. keyword = args["keyword"]
  103. query = DocumentSegment.query.filter(
  104. DocumentSegment.document_id == str(document_id), DocumentSegment.tenant_id == current_user.current_tenant_id
  105. )
  106. if status_list:
  107. query = query.filter(DocumentSegment.status.in_(status_list))
  108. if keyword:
  109. query = query.where(DocumentSegment.content.ilike(f"%{keyword}%"))
  110. total = query.count()
  111. segments = query.order_by(DocumentSegment.position).all()
  112. return {"data": marshal(segments, segment_fields), "doc_form": document.doc_form, "total": total}, 200
  113. class DatasetSegmentApi(DatasetApiResource):
  114. def delete(self, tenant_id, dataset_id, document_id, segment_id):
  115. # check dataset
  116. dataset_id = str(dataset_id)
  117. tenant_id = str(tenant_id)
  118. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  119. if not dataset:
  120. raise NotFound("Dataset not found.")
  121. # check user's model setting
  122. DatasetService.check_dataset_model_setting(dataset)
  123. # check document
  124. document_id = str(document_id)
  125. document = DocumentService.get_document(dataset_id, document_id)
  126. if not document:
  127. raise NotFound("Document not found.")
  128. # check segment
  129. segment = DocumentSegment.query.filter(
  130. DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
  131. ).first()
  132. if not segment:
  133. raise NotFound("Segment not found.")
  134. SegmentService.delete_segment(segment, document, dataset)
  135. return {"result": "success"}, 200
  136. @cloud_edition_billing_resource_check("vector_space", "dataset")
  137. def post(self, tenant_id, dataset_id, document_id, segment_id):
  138. # check dataset
  139. dataset_id = str(dataset_id)
  140. tenant_id = str(tenant_id)
  141. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  142. if not dataset:
  143. raise NotFound("Dataset not found.")
  144. # check user's model setting
  145. DatasetService.check_dataset_model_setting(dataset)
  146. # check document
  147. document_id = str(document_id)
  148. document = DocumentService.get_document(dataset_id, document_id)
  149. if not document:
  150. raise NotFound("Document not found.")
  151. if dataset.indexing_technique == "high_quality":
  152. # check embedding model setting
  153. try:
  154. model_manager = ModelManager()
  155. model_manager.get_model_instance(
  156. tenant_id=current_user.current_tenant_id,
  157. provider=dataset.embedding_model_provider,
  158. model_type=ModelType.TEXT_EMBEDDING,
  159. model=dataset.embedding_model,
  160. )
  161. except LLMBadRequestError:
  162. raise ProviderNotInitializeError(
  163. "No Embedding Model available. Please configure a valid provider "
  164. "in the Settings -> Model Provider."
  165. )
  166. except ProviderTokenNotInitError as ex:
  167. raise ProviderNotInitializeError(ex.description)
  168. # check segment
  169. segment_id = str(segment_id)
  170. segment = DocumentSegment.query.filter(
  171. DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
  172. ).first()
  173. if not segment:
  174. raise NotFound("Segment not found.")
  175. # validate args
  176. parser = reqparse.RequestParser()
  177. parser.add_argument("segment", type=dict, required=False, nullable=True, location="json")
  178. args = parser.parse_args()
  179. SegmentService.segment_create_args_validate(args["segment"], document)
  180. segment = SegmentService.update_segment(args["segment"], segment, document, dataset)
  181. return {"data": marshal(segment, segment_fields), "doc_form": document.doc_form}, 200
  182. api.add_resource(SegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments")
  183. api.add_resource(
  184. DatasetSegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>"
  185. )