batch_create_segment_to_index_task.py 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
  1. import datetime
  2. import logging
  3. import time
  4. import uuid
  5. import click
  6. from celery import shared_task
  7. from sqlalchemy import func
  8. from core.indexing_runner import IndexingRunner
  9. from core.model_manager import ModelManager
  10. from core.model_runtime.entities.model_entities import ModelType
  11. from extensions.ext_database import db
  12. from extensions.ext_redis import redis_client
  13. from libs import helper
  14. from models.dataset import Dataset, Document, DocumentSegment
  15. @shared_task(queue='dataset')
  16. def batch_create_segment_to_index_task(job_id: str, content: list, dataset_id: str, document_id: str,
  17. tenant_id: str, user_id: str):
  18. """
  19. Async batch create segment to index
  20. :param job_id:
  21. :param content:
  22. :param dataset_id:
  23. :param document_id:
  24. :param tenant_id:
  25. :param user_id:
  26. Usage: batch_create_segment_to_index_task.delay(segment_id)
  27. """
  28. logging.info(click.style('Start batch create segment jobId: {}'.format(job_id), fg='green'))
  29. start_at = time.perf_counter()
  30. indexing_cache_key = 'segment_batch_import_{}'.format(job_id)
  31. try:
  32. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  33. if not dataset:
  34. raise ValueError('Dataset not exist.')
  35. dataset_document = db.session.query(Document).filter(Document.id == document_id).first()
  36. if not dataset_document:
  37. raise ValueError('Document not exist.')
  38. if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
  39. raise ValueError('Document is not available.')
  40. document_segments = []
  41. embedding_model = None
  42. if dataset.indexing_technique == 'high_quality':
  43. model_manager = ModelManager()
  44. embedding_model = model_manager.get_model_instance(
  45. tenant_id=dataset.tenant_id,
  46. provider=dataset.embedding_model_provider,
  47. model_type=ModelType.TEXT_EMBEDDING,
  48. model=dataset.embedding_model
  49. )
  50. for segment in content:
  51. content = segment['content']
  52. doc_id = str(uuid.uuid4())
  53. segment_hash = helper.generate_text_hash(content)
  54. # calc embedding use tokens
  55. tokens = embedding_model.get_text_embedding_num_tokens(
  56. texts=[content]
  57. ) if embedding_model else 0
  58. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  59. DocumentSegment.document_id == dataset_document.id
  60. ).scalar()
  61. segment_document = DocumentSegment(
  62. tenant_id=tenant_id,
  63. dataset_id=dataset_id,
  64. document_id=document_id,
  65. index_node_id=doc_id,
  66. index_node_hash=segment_hash,
  67. position=max_position + 1 if max_position else 1,
  68. content=content,
  69. word_count=len(content),
  70. tokens=tokens,
  71. created_by=user_id,
  72. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  73. status='completed',
  74. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  75. )
  76. if dataset_document.doc_form == 'qa_model':
  77. segment_document.answer = segment['answer']
  78. db.session.add(segment_document)
  79. document_segments.append(segment_document)
  80. # add index to db
  81. indexing_runner = IndexingRunner()
  82. indexing_runner.batch_add_segments(document_segments, dataset)
  83. db.session.commit()
  84. redis_client.setex(indexing_cache_key, 600, 'completed')
  85. end_at = time.perf_counter()
  86. logging.info(click.style('Segment batch created job: {} latency: {}'.format(job_id, end_at - start_at), fg='green'))
  87. except Exception as e:
  88. logging.exception("Segments batch created index failed:{}".format(str(e)))
  89. redis_client.setex(indexing_cache_key, 600, 'error')