base_agent_runner.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511
  1. import json
  2. import logging
  3. import uuid
  4. from datetime import datetime, timezone
  5. from typing import Optional, Union, cast
  6. from core.agent.entities import AgentEntity, AgentToolEntity
  7. from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
  8. from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
  9. from core.app.apps.base_app_queue_manager import AppQueueManager
  10. from core.app.apps.base_app_runner import AppRunner
  11. from core.app.entities.app_invoke_entities import (
  12. AgentChatAppGenerateEntity,
  13. ModelConfigWithCredentialsEntity,
  14. )
  15. from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
  16. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  17. from core.file.message_file_parser import MessageFileParser
  18. from core.memory.token_buffer_memory import TokenBufferMemory
  19. from core.model_manager import ModelInstance
  20. from core.model_runtime.entities.llm_entities import LLMUsage
  21. from core.model_runtime.entities.message_entities import (
  22. AssistantPromptMessage,
  23. PromptMessage,
  24. PromptMessageTool,
  25. SystemPromptMessage,
  26. TextPromptMessageContent,
  27. ToolPromptMessage,
  28. UserPromptMessage,
  29. )
  30. from core.model_runtime.entities.model_entities import ModelFeature
  31. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  32. from core.model_runtime.utils.encoders import jsonable_encoder
  33. from core.tools.entities.tool_entities import (
  34. ToolParameter,
  35. ToolRuntimeVariablePool,
  36. )
  37. from core.tools.tool.dataset_retriever_tool import DatasetRetrieverTool
  38. from core.tools.tool.tool import Tool
  39. from core.tools.tool_manager import ToolManager
  40. from core.tools.utils.tool_parameter_converter import ToolParameterConverter
  41. from extensions.ext_database import db
  42. from models.model import Conversation, Message, MessageAgentThought
  43. from models.tools import ToolConversationVariables
  44. logger = logging.getLogger(__name__)
  45. class BaseAgentRunner(AppRunner):
  46. def __init__(self, tenant_id: str,
  47. application_generate_entity: AgentChatAppGenerateEntity,
  48. conversation: Conversation,
  49. app_config: AgentChatAppConfig,
  50. model_config: ModelConfigWithCredentialsEntity,
  51. config: AgentEntity,
  52. queue_manager: AppQueueManager,
  53. message: Message,
  54. user_id: str,
  55. memory: Optional[TokenBufferMemory] = None,
  56. prompt_messages: Optional[list[PromptMessage]] = None,
  57. variables_pool: Optional[ToolRuntimeVariablePool] = None,
  58. db_variables: Optional[ToolConversationVariables] = None,
  59. model_instance: ModelInstance = None
  60. ) -> None:
  61. """
  62. Agent runner
  63. :param tenant_id: tenant id
  64. :param app_config: app generate entity
  65. :param model_config: model config
  66. :param config: dataset config
  67. :param queue_manager: queue manager
  68. :param message: message
  69. :param user_id: user id
  70. :param agent_llm_callback: agent llm callback
  71. :param callback: callback
  72. :param memory: memory
  73. """
  74. self.tenant_id = tenant_id
  75. self.application_generate_entity = application_generate_entity
  76. self.conversation = conversation
  77. self.app_config = app_config
  78. self.model_config = model_config
  79. self.config = config
  80. self.queue_manager = queue_manager
  81. self.message = message
  82. self.user_id = user_id
  83. self.memory = memory
  84. self.history_prompt_messages = self.organize_agent_history(
  85. prompt_messages=prompt_messages or []
  86. )
  87. self.variables_pool = variables_pool
  88. self.db_variables_pool = db_variables
  89. self.model_instance = model_instance
  90. # init callback
  91. self.agent_callback = DifyAgentCallbackHandler()
  92. # init dataset tools
  93. hit_callback = DatasetIndexToolCallbackHandler(
  94. queue_manager=queue_manager,
  95. app_id=self.app_config.app_id,
  96. message_id=message.id,
  97. user_id=user_id,
  98. invoke_from=self.application_generate_entity.invoke_from,
  99. )
  100. self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
  101. tenant_id=tenant_id,
  102. dataset_ids=app_config.dataset.dataset_ids if app_config.dataset else [],
  103. retrieve_config=app_config.dataset.retrieve_config if app_config.dataset else None,
  104. return_resource=app_config.additional_features.show_retrieve_source,
  105. invoke_from=application_generate_entity.invoke_from,
  106. hit_callback=hit_callback
  107. )
  108. # get how many agent thoughts have been created
  109. self.agent_thought_count = db.session.query(MessageAgentThought).filter(
  110. MessageAgentThought.message_id == self.message.id,
  111. ).count()
  112. db.session.close()
  113. # check if model supports stream tool call
  114. llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
  115. model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
  116. if model_schema and ModelFeature.STREAM_TOOL_CALL in (model_schema.features or []):
  117. self.stream_tool_call = True
  118. else:
  119. self.stream_tool_call = False
  120. # check if model supports vision
  121. if model_schema and ModelFeature.VISION in (model_schema.features or []):
  122. self.files = application_generate_entity.files
  123. else:
  124. self.files = []
  125. self.query = None
  126. self._current_thoughts: list[PromptMessage] = []
  127. def _repack_app_generate_entity(self, app_generate_entity: AgentChatAppGenerateEntity) \
  128. -> AgentChatAppGenerateEntity:
  129. """
  130. Repack app generate entity
  131. """
  132. if app_generate_entity.app_config.prompt_template.simple_prompt_template is None:
  133. app_generate_entity.app_config.prompt_template.simple_prompt_template = ''
  134. return app_generate_entity
  135. def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> tuple[PromptMessageTool, Tool]:
  136. """
  137. convert tool to prompt message tool
  138. """
  139. tool_entity = ToolManager.get_agent_tool_runtime(
  140. tenant_id=self.tenant_id,
  141. app_id=self.app_config.app_id,
  142. agent_tool=tool,
  143. invoke_from=self.application_generate_entity.invoke_from
  144. )
  145. tool_entity.load_variables(self.variables_pool)
  146. message_tool = PromptMessageTool(
  147. name=tool.tool_name,
  148. description=tool_entity.description.llm,
  149. parameters={
  150. "type": "object",
  151. "properties": {},
  152. "required": [],
  153. }
  154. )
  155. parameters = tool_entity.get_all_runtime_parameters()
  156. for parameter in parameters:
  157. if parameter.form != ToolParameter.ToolParameterForm.LLM:
  158. continue
  159. parameter_type = ToolParameterConverter.get_parameter_type(parameter.type)
  160. enum = []
  161. if parameter.type == ToolParameter.ToolParameterType.SELECT:
  162. enum = [option.value for option in parameter.options]
  163. message_tool.parameters['properties'][parameter.name] = {
  164. "type": parameter_type,
  165. "description": parameter.llm_description or '',
  166. }
  167. if len(enum) > 0:
  168. message_tool.parameters['properties'][parameter.name]['enum'] = enum
  169. if parameter.required:
  170. message_tool.parameters['required'].append(parameter.name)
  171. return message_tool, tool_entity
  172. def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
  173. """
  174. convert dataset retriever tool to prompt message tool
  175. """
  176. prompt_tool = PromptMessageTool(
  177. name=tool.identity.name,
  178. description=tool.description.llm,
  179. parameters={
  180. "type": "object",
  181. "properties": {},
  182. "required": [],
  183. }
  184. )
  185. for parameter in tool.get_runtime_parameters():
  186. parameter_type = 'string'
  187. prompt_tool.parameters['properties'][parameter.name] = {
  188. "type": parameter_type,
  189. "description": parameter.llm_description or '',
  190. }
  191. if parameter.required:
  192. if parameter.name not in prompt_tool.parameters['required']:
  193. prompt_tool.parameters['required'].append(parameter.name)
  194. return prompt_tool
  195. def _init_prompt_tools(self) -> tuple[dict[str, Tool], list[PromptMessageTool]]:
  196. """
  197. Init tools
  198. """
  199. tool_instances = {}
  200. prompt_messages_tools = []
  201. for tool in self.app_config.agent.tools if self.app_config.agent else []:
  202. try:
  203. prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
  204. except Exception:
  205. # api tool may be deleted
  206. continue
  207. # save tool entity
  208. tool_instances[tool.tool_name] = tool_entity
  209. # save prompt tool
  210. prompt_messages_tools.append(prompt_tool)
  211. # convert dataset tools into ModelRuntime Tool format
  212. for dataset_tool in self.dataset_tools:
  213. prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
  214. # save prompt tool
  215. prompt_messages_tools.append(prompt_tool)
  216. # save tool entity
  217. tool_instances[dataset_tool.identity.name] = dataset_tool
  218. return tool_instances, prompt_messages_tools
  219. def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
  220. """
  221. update prompt message tool
  222. """
  223. # try to get tool runtime parameters
  224. tool_runtime_parameters = tool.get_runtime_parameters() or []
  225. for parameter in tool_runtime_parameters:
  226. if parameter.form != ToolParameter.ToolParameterForm.LLM:
  227. continue
  228. parameter_type = ToolParameterConverter.get_parameter_type(parameter.type)
  229. enum = []
  230. if parameter.type == ToolParameter.ToolParameterType.SELECT:
  231. enum = [option.value for option in parameter.options]
  232. prompt_tool.parameters['properties'][parameter.name] = {
  233. "type": parameter_type,
  234. "description": parameter.llm_description or '',
  235. }
  236. if len(enum) > 0:
  237. prompt_tool.parameters['properties'][parameter.name]['enum'] = enum
  238. if parameter.required:
  239. if parameter.name not in prompt_tool.parameters['required']:
  240. prompt_tool.parameters['required'].append(parameter.name)
  241. return prompt_tool
  242. def create_agent_thought(self, message_id: str, message: str,
  243. tool_name: str, tool_input: str, messages_ids: list[str]
  244. ) -> MessageAgentThought:
  245. """
  246. Create agent thought
  247. """
  248. thought = MessageAgentThought(
  249. message_id=message_id,
  250. message_chain_id=None,
  251. thought='',
  252. tool=tool_name,
  253. tool_labels_str='{}',
  254. tool_meta_str='{}',
  255. tool_input=tool_input,
  256. message=message,
  257. message_token=0,
  258. message_unit_price=0,
  259. message_price_unit=0,
  260. message_files=json.dumps(messages_ids) if messages_ids else '',
  261. answer='',
  262. observation='',
  263. answer_token=0,
  264. answer_unit_price=0,
  265. answer_price_unit=0,
  266. tokens=0,
  267. total_price=0,
  268. position=self.agent_thought_count + 1,
  269. currency='USD',
  270. latency=0,
  271. created_by_role='account',
  272. created_by=self.user_id,
  273. )
  274. db.session.add(thought)
  275. db.session.commit()
  276. db.session.refresh(thought)
  277. db.session.close()
  278. self.agent_thought_count += 1
  279. return thought
  280. def save_agent_thought(self,
  281. agent_thought: MessageAgentThought,
  282. tool_name: str,
  283. tool_input: Union[str, dict],
  284. thought: str,
  285. observation: Union[str, dict],
  286. tool_invoke_meta: Union[str, dict],
  287. answer: str,
  288. messages_ids: list[str],
  289. llm_usage: LLMUsage = None) -> MessageAgentThought:
  290. """
  291. Save agent thought
  292. """
  293. agent_thought = db.session.query(MessageAgentThought).filter(
  294. MessageAgentThought.id == agent_thought.id
  295. ).first()
  296. if thought is not None:
  297. agent_thought.thought = thought
  298. if tool_name is not None:
  299. agent_thought.tool = tool_name
  300. if tool_input is not None:
  301. if isinstance(tool_input, dict):
  302. try:
  303. tool_input = json.dumps(tool_input, ensure_ascii=False)
  304. except Exception as e:
  305. tool_input = json.dumps(tool_input)
  306. agent_thought.tool_input = tool_input
  307. if observation is not None:
  308. if isinstance(observation, dict):
  309. try:
  310. observation = json.dumps(observation, ensure_ascii=False)
  311. except Exception as e:
  312. observation = json.dumps(observation)
  313. agent_thought.observation = observation
  314. if answer is not None:
  315. agent_thought.answer = answer
  316. if messages_ids is not None and len(messages_ids) > 0:
  317. agent_thought.message_files = json.dumps(messages_ids)
  318. if llm_usage:
  319. agent_thought.message_token = llm_usage.prompt_tokens
  320. agent_thought.message_price_unit = llm_usage.prompt_price_unit
  321. agent_thought.message_unit_price = llm_usage.prompt_unit_price
  322. agent_thought.answer_token = llm_usage.completion_tokens
  323. agent_thought.answer_price_unit = llm_usage.completion_price_unit
  324. agent_thought.answer_unit_price = llm_usage.completion_unit_price
  325. agent_thought.tokens = llm_usage.total_tokens
  326. agent_thought.total_price = llm_usage.total_price
  327. # check if tool labels is not empty
  328. labels = agent_thought.tool_labels or {}
  329. tools = agent_thought.tool.split(';') if agent_thought.tool else []
  330. for tool in tools:
  331. if not tool:
  332. continue
  333. if tool not in labels:
  334. tool_label = ToolManager.get_tool_label(tool)
  335. if tool_label:
  336. labels[tool] = tool_label.to_dict()
  337. else:
  338. labels[tool] = {'en_US': tool, 'zh_Hans': tool}
  339. agent_thought.tool_labels_str = json.dumps(labels)
  340. if tool_invoke_meta is not None:
  341. if isinstance(tool_invoke_meta, dict):
  342. try:
  343. tool_invoke_meta = json.dumps(tool_invoke_meta, ensure_ascii=False)
  344. except Exception as e:
  345. tool_invoke_meta = json.dumps(tool_invoke_meta)
  346. agent_thought.tool_meta_str = tool_invoke_meta
  347. db.session.commit()
  348. db.session.close()
  349. def update_db_variables(self, tool_variables: ToolRuntimeVariablePool, db_variables: ToolConversationVariables):
  350. """
  351. convert tool variables to db variables
  352. """
  353. db_variables = db.session.query(ToolConversationVariables).filter(
  354. ToolConversationVariables.conversation_id == self.message.conversation_id,
  355. ).first()
  356. db_variables.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
  357. db_variables.variables_str = json.dumps(jsonable_encoder(tool_variables.pool))
  358. db.session.commit()
  359. db.session.close()
  360. def organize_agent_history(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
  361. """
  362. Organize agent history
  363. """
  364. result = []
  365. # check if there is a system message in the beginning of the conversation
  366. for prompt_message in prompt_messages:
  367. if isinstance(prompt_message, SystemPromptMessage):
  368. result.append(prompt_message)
  369. messages: list[Message] = db.session.query(Message).filter(
  370. Message.conversation_id == self.message.conversation_id,
  371. ).order_by(Message.created_at.asc()).all()
  372. for message in messages:
  373. if message.id == self.message.id:
  374. continue
  375. result.append(self.organize_agent_user_prompt(message))
  376. agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
  377. if agent_thoughts:
  378. for agent_thought in agent_thoughts:
  379. tools = agent_thought.tool
  380. if tools:
  381. tools = tools.split(';')
  382. tool_calls: list[AssistantPromptMessage.ToolCall] = []
  383. tool_call_response: list[ToolPromptMessage] = []
  384. try:
  385. tool_inputs = json.loads(agent_thought.tool_input)
  386. except Exception as e:
  387. tool_inputs = { tool: {} for tool in tools }
  388. try:
  389. tool_responses = json.loads(agent_thought.observation)
  390. except Exception as e:
  391. tool_responses = { tool: agent_thought.observation for tool in tools }
  392. for tool in tools:
  393. # generate a uuid for tool call
  394. tool_call_id = str(uuid.uuid4())
  395. tool_calls.append(AssistantPromptMessage.ToolCall(
  396. id=tool_call_id,
  397. type='function',
  398. function=AssistantPromptMessage.ToolCall.ToolCallFunction(
  399. name=tool,
  400. arguments=json.dumps(tool_inputs.get(tool, {})),
  401. )
  402. ))
  403. tool_call_response.append(ToolPromptMessage(
  404. content=tool_responses.get(tool, agent_thought.observation),
  405. name=tool,
  406. tool_call_id=tool_call_id,
  407. ))
  408. result.extend([
  409. AssistantPromptMessage(
  410. content=agent_thought.thought,
  411. tool_calls=tool_calls,
  412. ),
  413. *tool_call_response
  414. ])
  415. if not tools:
  416. result.append(AssistantPromptMessage(content=agent_thought.thought))
  417. else:
  418. if message.answer:
  419. result.append(AssistantPromptMessage(content=message.answer))
  420. db.session.close()
  421. return result
  422. def organize_agent_user_prompt(self, message: Message) -> UserPromptMessage:
  423. message_file_parser = MessageFileParser(
  424. tenant_id=self.tenant_id,
  425. app_id=self.app_config.app_id,
  426. )
  427. files = message.message_files
  428. if files:
  429. file_extra_config = FileUploadConfigManager.convert(message.app_model_config.to_dict())
  430. if file_extra_config:
  431. file_objs = message_file_parser.transform_message_files(
  432. files,
  433. file_extra_config
  434. )
  435. else:
  436. file_objs = []
  437. if not file_objs:
  438. return UserPromptMessage(content=message.query)
  439. else:
  440. prompt_message_contents = [TextPromptMessageContent(data=message.query)]
  441. for file_obj in file_objs:
  442. prompt_message_contents.append(file_obj.prompt_message_content)
  443. return UserPromptMessage(content=prompt_message_contents)
  444. else:
  445. return UserPromptMessage(content=message.query)