123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- import os
- from collections.abc import Generator
- import pytest
- from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
- from core.model_runtime.entities.message_entities import AssistantPromptMessage, SystemPromptMessage, UserPromptMessage
- from core.model_runtime.errors.validate import CredentialsValidateFailedError
- from core.model_runtime.model_providers.replicate.llm.llm import ReplicateLargeLanguageModel
- def test_validate_credentials():
- model = ReplicateLargeLanguageModel()
- with pytest.raises(CredentialsValidateFailedError):
- model.validate_credentials(
- model="meta/llama-2-13b-chat",
- credentials={
- "replicate_api_token": "invalid_key",
- "model_version": "f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d",
- },
- )
- model.validate_credentials(
- model="meta/llama-2-13b-chat",
- credentials={
- "replicate_api_token": os.environ.get("REPLICATE_API_KEY"),
- "model_version": "f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d",
- },
- )
- def test_invoke_model():
- model = ReplicateLargeLanguageModel()
- response = model.invoke(
- model="meta/llama-2-13b-chat",
- credentials={
- "replicate_api_token": os.environ.get("REPLICATE_API_KEY"),
- "model_version": "f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d",
- },
- prompt_messages=[
- SystemPromptMessage(
- content="You are a helpful AI assistant.",
- ),
- UserPromptMessage(content="Who are you?"),
- ],
- model_parameters={
- "temperature": 1.0,
- "top_k": 2,
- "top_p": 0.5,
- },
- stop=["How"],
- stream=False,
- user="abc-123",
- )
- assert isinstance(response, LLMResult)
- assert len(response.message.content) > 0
- def test_invoke_stream_model():
- model = ReplicateLargeLanguageModel()
- response = model.invoke(
- model="mistralai/mixtral-8x7b-instruct-v0.1",
- credentials={
- "replicate_api_token": os.environ.get("REPLICATE_API_KEY"),
- "model_version": "2b56576fcfbe32fa0526897d8385dd3fb3d36ba6fd0dbe033c72886b81ade93e",
- },
- prompt_messages=[
- SystemPromptMessage(
- content="You are a helpful AI assistant.",
- ),
- UserPromptMessage(content="Who are you?"),
- ],
- model_parameters={
- "temperature": 1.0,
- "top_k": 2,
- "top_p": 0.5,
- },
- stop=["How"],
- stream=True,
- user="abc-123",
- )
- assert isinstance(response, Generator)
- for chunk in response:
- assert isinstance(chunk, LLMResultChunk)
- assert isinstance(chunk.delta, LLMResultChunkDelta)
- assert isinstance(chunk.delta.message, AssistantPromptMessage)
- def test_get_num_tokens():
- model = ReplicateLargeLanguageModel()
- num_tokens = model.get_num_tokens(
- model="",
- credentials={
- "replicate_api_token": os.environ.get("REPLICATE_API_KEY"),
- "model_version": "2b56576fcfbe32fa0526897d8385dd3fb3d36ba6fd0dbe033c72886b81ade93e",
- },
- prompt_messages=[
- SystemPromptMessage(
- content="You are a helpful AI assistant.",
- ),
- UserPromptMessage(content="Hello World!"),
- ],
- )
- assert num_tokens == 14
|