test_llm.py 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. import os
  2. from collections.abc import Generator
  3. import pytest
  4. from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
  5. from core.model_runtime.entities.message_entities import (
  6. AssistantPromptMessage,
  7. PromptMessageTool,
  8. SystemPromptMessage,
  9. UserPromptMessage,
  10. )
  11. from core.model_runtime.errors.validate import CredentialsValidateFailedError
  12. from core.model_runtime.model_providers.openrouter.llm.llm import OpenRouterLargeLanguageModel
  13. def test_validate_credentials():
  14. model = OpenRouterLargeLanguageModel()
  15. with pytest.raises(CredentialsValidateFailedError):
  16. model.validate_credentials(
  17. model="mistralai/mixtral-8x7b-instruct", credentials={"api_key": "invalid_key", "mode": "chat"}
  18. )
  19. model.validate_credentials(
  20. model="mistralai/mixtral-8x7b-instruct",
  21. credentials={"api_key": os.environ.get("TOGETHER_API_KEY"), "mode": "chat"},
  22. )
  23. def test_invoke_model():
  24. model = OpenRouterLargeLanguageModel()
  25. response = model.invoke(
  26. model="mistralai/mixtral-8x7b-instruct",
  27. credentials={"api_key": os.environ.get("TOGETHER_API_KEY"), "mode": "completion"},
  28. prompt_messages=[
  29. SystemPromptMessage(
  30. content="You are a helpful AI assistant.",
  31. ),
  32. UserPromptMessage(content="Who are you?"),
  33. ],
  34. model_parameters={
  35. "temperature": 1.0,
  36. "top_k": 2,
  37. "top_p": 0.5,
  38. },
  39. stop=["How"],
  40. stream=False,
  41. user="abc-123",
  42. )
  43. assert isinstance(response, LLMResult)
  44. assert len(response.message.content) > 0
  45. def test_invoke_stream_model():
  46. model = OpenRouterLargeLanguageModel()
  47. response = model.invoke(
  48. model="mistralai/mixtral-8x7b-instruct",
  49. credentials={"api_key": os.environ.get("TOGETHER_API_KEY"), "mode": "chat"},
  50. prompt_messages=[
  51. SystemPromptMessage(
  52. content="You are a helpful AI assistant.",
  53. ),
  54. UserPromptMessage(content="Who are you?"),
  55. ],
  56. model_parameters={
  57. "temperature": 1.0,
  58. "top_k": 2,
  59. "top_p": 0.5,
  60. },
  61. stop=["How"],
  62. stream=True,
  63. user="abc-123",
  64. )
  65. assert isinstance(response, Generator)
  66. for chunk in response:
  67. assert isinstance(chunk, LLMResultChunk)
  68. assert isinstance(chunk.delta, LLMResultChunkDelta)
  69. assert isinstance(chunk.delta.message, AssistantPromptMessage)
  70. def test_get_num_tokens():
  71. model = OpenRouterLargeLanguageModel()
  72. num_tokens = model.get_num_tokens(
  73. model="mistralai/mixtral-8x7b-instruct",
  74. credentials={
  75. "api_key": os.environ.get("TOGETHER_API_KEY"),
  76. },
  77. prompt_messages=[
  78. SystemPromptMessage(
  79. content="You are a helpful AI assistant.",
  80. ),
  81. UserPromptMessage(content="Hello World!"),
  82. ],
  83. )
  84. assert isinstance(num_tokens, int)
  85. assert num_tokens == 21