1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- import os
- from collections.abc import Generator
- import pytest
- from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
- from core.model_runtime.entities.message_entities import AssistantPromptMessage, SystemPromptMessage, UserPromptMessage
- from core.model_runtime.errors.validate import CredentialsValidateFailedError
- from core.model_runtime.model_providers.anthropic.llm.llm import AnthropicLargeLanguageModel
- from tests.integration_tests.model_runtime.__mock.anthropic import setup_anthropic_mock
- @pytest.mark.parametrize("setup_anthropic_mock", [["none"]], indirect=True)
- def test_validate_credentials(setup_anthropic_mock):
- model = AnthropicLargeLanguageModel()
- with pytest.raises(CredentialsValidateFailedError):
- model.validate_credentials(model="claude-instant-1.2", credentials={"anthropic_api_key": "invalid_key"})
- model.validate_credentials(
- model="claude-instant-1.2", credentials={"anthropic_api_key": os.environ.get("ANTHROPIC_API_KEY")}
- )
- @pytest.mark.parametrize("setup_anthropic_mock", [["none"]], indirect=True)
- def test_invoke_model(setup_anthropic_mock):
- model = AnthropicLargeLanguageModel()
- response = model.invoke(
- model="claude-instant-1.2",
- credentials={
- "anthropic_api_key": os.environ.get("ANTHROPIC_API_KEY"),
- "anthropic_api_url": os.environ.get("ANTHROPIC_API_URL"),
- },
- prompt_messages=[
- SystemPromptMessage(
- content="You are a helpful AI assistant.",
- ),
- UserPromptMessage(content="Hello World!"),
- ],
- model_parameters={"temperature": 0.0, "top_p": 1.0, "max_tokens": 10},
- stop=["How"],
- stream=False,
- user="abc-123",
- )
- assert isinstance(response, LLMResult)
- assert len(response.message.content) > 0
- @pytest.mark.parametrize("setup_anthropic_mock", [["none"]], indirect=True)
- def test_invoke_stream_model(setup_anthropic_mock):
- model = AnthropicLargeLanguageModel()
- response = model.invoke(
- model="claude-instant-1.2",
- credentials={"anthropic_api_key": os.environ.get("ANTHROPIC_API_KEY")},
- prompt_messages=[
- SystemPromptMessage(
- content="You are a helpful AI assistant.",
- ),
- UserPromptMessage(content="Hello World!"),
- ],
- model_parameters={"temperature": 0.0, "max_tokens": 100},
- stream=True,
- user="abc-123",
- )
- assert isinstance(response, Generator)
- for chunk in response:
- assert isinstance(chunk, LLMResultChunk)
- assert isinstance(chunk.delta, LLMResultChunkDelta)
- assert isinstance(chunk.delta.message, AssistantPromptMessage)
- assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
- def test_get_num_tokens():
- model = AnthropicLargeLanguageModel()
- num_tokens = model.get_num_tokens(
- model="claude-instant-1.2",
- credentials={"anthropic_api_key": os.environ.get("ANTHROPIC_API_KEY")},
- prompt_messages=[
- SystemPromptMessage(
- content="You are a helpful AI assistant.",
- ),
- UserPromptMessage(content="Hello World!"),
- ],
- )
- assert num_tokens == 18
|