retrieval_service.py 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217
  1. import threading
  2. from typing import Optional
  3. from flask import Flask, current_app
  4. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  5. from core.rag.datasource.keyword.keyword_factory import Keyword
  6. from core.rag.datasource.vdb.vector_factory import Vector
  7. from core.rag.rerank.constants.rerank_mode import RerankMode
  8. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  9. from extensions.ext_database import db
  10. from models.dataset import Dataset
  11. default_retrieval_model = {
  12. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  13. "reranking_enable": False,
  14. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  15. "top_k": 2,
  16. "score_threshold_enabled": False,
  17. }
  18. class RetrievalService:
  19. @classmethod
  20. def retrieve(
  21. cls,
  22. retrieval_method: str,
  23. dataset_id: str,
  24. query: str,
  25. top_k: int,
  26. score_threshold: Optional[float] = 0.0,
  27. reranking_model: Optional[dict] = None,
  28. reranking_mode: Optional[str] = "reranking_model",
  29. weights: Optional[dict] = None,
  30. ):
  31. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  32. if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  33. return []
  34. all_documents = []
  35. threads = []
  36. exceptions = []
  37. # retrieval_model source with keyword
  38. if retrieval_method == "keyword_search":
  39. keyword_thread = threading.Thread(
  40. target=RetrievalService.keyword_search,
  41. kwargs={
  42. "flask_app": current_app._get_current_object(),
  43. "dataset_id": dataset_id,
  44. "query": query,
  45. "top_k": top_k,
  46. "all_documents": all_documents,
  47. "exceptions": exceptions,
  48. },
  49. )
  50. threads.append(keyword_thread)
  51. keyword_thread.start()
  52. # retrieval_model source with semantic
  53. if RetrievalMethod.is_support_semantic_search(retrieval_method):
  54. embedding_thread = threading.Thread(
  55. target=RetrievalService.embedding_search,
  56. kwargs={
  57. "flask_app": current_app._get_current_object(),
  58. "dataset_id": dataset_id,
  59. "query": query,
  60. "top_k": top_k,
  61. "score_threshold": score_threshold,
  62. "reranking_model": reranking_model,
  63. "all_documents": all_documents,
  64. "retrieval_method": retrieval_method,
  65. "exceptions": exceptions,
  66. },
  67. )
  68. threads.append(embedding_thread)
  69. embedding_thread.start()
  70. # retrieval source with full text
  71. if RetrievalMethod.is_support_fulltext_search(retrieval_method):
  72. full_text_index_thread = threading.Thread(
  73. target=RetrievalService.full_text_index_search,
  74. kwargs={
  75. "flask_app": current_app._get_current_object(),
  76. "dataset_id": dataset_id,
  77. "query": query,
  78. "retrieval_method": retrieval_method,
  79. "score_threshold": score_threshold,
  80. "top_k": top_k,
  81. "reranking_model": reranking_model,
  82. "all_documents": all_documents,
  83. "exceptions": exceptions,
  84. },
  85. )
  86. threads.append(full_text_index_thread)
  87. full_text_index_thread.start()
  88. for thread in threads:
  89. thread.join()
  90. if exceptions:
  91. exception_message = ";\n".join(exceptions)
  92. raise Exception(exception_message)
  93. if retrieval_method == RetrievalMethod.HYBRID_SEARCH.value:
  94. data_post_processor = DataPostProcessor(
  95. str(dataset.tenant_id), reranking_mode, reranking_model, weights, False
  96. )
  97. all_documents = data_post_processor.invoke(
  98. query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
  99. )
  100. return all_documents
  101. @classmethod
  102. def keyword_search(
  103. cls, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list, exceptions: list
  104. ):
  105. with flask_app.app_context():
  106. try:
  107. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  108. keyword = Keyword(dataset=dataset)
  109. documents = keyword.search(cls.escape_query_for_search(query), top_k=top_k)
  110. all_documents.extend(documents)
  111. except Exception as e:
  112. exceptions.append(str(e))
  113. @classmethod
  114. def embedding_search(
  115. cls,
  116. flask_app: Flask,
  117. dataset_id: str,
  118. query: str,
  119. top_k: int,
  120. score_threshold: Optional[float],
  121. reranking_model: Optional[dict],
  122. all_documents: list,
  123. retrieval_method: str,
  124. exceptions: list,
  125. ):
  126. with flask_app.app_context():
  127. try:
  128. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  129. vector = Vector(dataset=dataset)
  130. documents = vector.search_by_vector(
  131. cls.escape_query_for_search(query),
  132. search_type="similarity_score_threshold",
  133. top_k=top_k,
  134. score_threshold=score_threshold,
  135. filter={"group_id": [dataset.id]},
  136. )
  137. if documents:
  138. if (
  139. reranking_model
  140. and reranking_model.get("reranking_model_name")
  141. and reranking_model.get("reranking_provider_name")
  142. and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH.value
  143. ):
  144. data_post_processor = DataPostProcessor(
  145. str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
  146. )
  147. all_documents.extend(
  148. data_post_processor.invoke(
  149. query=query, documents=documents, score_threshold=score_threshold, top_n=len(documents)
  150. )
  151. )
  152. else:
  153. all_documents.extend(documents)
  154. except Exception as e:
  155. exceptions.append(str(e))
  156. @classmethod
  157. def full_text_index_search(
  158. cls,
  159. flask_app: Flask,
  160. dataset_id: str,
  161. query: str,
  162. top_k: int,
  163. score_threshold: Optional[float],
  164. reranking_model: Optional[dict],
  165. all_documents: list,
  166. retrieval_method: str,
  167. exceptions: list,
  168. ):
  169. with flask_app.app_context():
  170. try:
  171. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  172. vector_processor = Vector(
  173. dataset=dataset,
  174. )
  175. documents = vector_processor.search_by_full_text(cls.escape_query_for_search(query), top_k=top_k)
  176. if documents:
  177. if (
  178. reranking_model
  179. and reranking_model.get("reranking_model_name")
  180. and reranking_model.get("reranking_provider_name")
  181. and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH.value
  182. ):
  183. data_post_processor = DataPostProcessor(
  184. str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
  185. )
  186. all_documents.extend(
  187. data_post_processor.invoke(
  188. query=query, documents=documents, score_threshold=score_threshold, top_n=len(documents)
  189. )
  190. )
  191. else:
  192. all_documents.extend(documents)
  193. except Exception as e:
  194. exceptions.append(str(e))
  195. @staticmethod
  196. def escape_query_for_search(query: str) -> str:
  197. return query.replace('"', '\\"')