123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- import threading
- from typing import Optional
- from flask import Flask, current_app
- from core.rag.data_post_processor.data_post_processor import DataPostProcessor
- from core.rag.datasource.keyword.keyword_factory import Keyword
- from core.rag.datasource.vdb.vector_factory import Vector
- from core.rag.rerank.constants.rerank_mode import RerankMode
- from core.rag.retrieval.retrieval_methods import RetrievalMethod
- from extensions.ext_database import db
- from models.dataset import Dataset
- default_retrieval_model = {
- "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
- "reranking_enable": False,
- "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
- "top_k": 2,
- "score_threshold_enabled": False,
- }
- class RetrievalService:
- @classmethod
- def retrieve(
- cls,
- retrieval_method: str,
- dataset_id: str,
- query: str,
- top_k: int,
- score_threshold: Optional[float] = 0.0,
- reranking_model: Optional[dict] = None,
- reranking_mode: Optional[str] = "reranking_model",
- weights: Optional[dict] = None,
- ):
- dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
- if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
- return []
- all_documents = []
- threads = []
- exceptions = []
- # retrieval_model source with keyword
- if retrieval_method == "keyword_search":
- keyword_thread = threading.Thread(
- target=RetrievalService.keyword_search,
- kwargs={
- "flask_app": current_app._get_current_object(),
- "dataset_id": dataset_id,
- "query": query,
- "top_k": top_k,
- "all_documents": all_documents,
- "exceptions": exceptions,
- },
- )
- threads.append(keyword_thread)
- keyword_thread.start()
- # retrieval_model source with semantic
- if RetrievalMethod.is_support_semantic_search(retrieval_method):
- embedding_thread = threading.Thread(
- target=RetrievalService.embedding_search,
- kwargs={
- "flask_app": current_app._get_current_object(),
- "dataset_id": dataset_id,
- "query": query,
- "top_k": top_k,
- "score_threshold": score_threshold,
- "reranking_model": reranking_model,
- "all_documents": all_documents,
- "retrieval_method": retrieval_method,
- "exceptions": exceptions,
- },
- )
- threads.append(embedding_thread)
- embedding_thread.start()
- # retrieval source with full text
- if RetrievalMethod.is_support_fulltext_search(retrieval_method):
- full_text_index_thread = threading.Thread(
- target=RetrievalService.full_text_index_search,
- kwargs={
- "flask_app": current_app._get_current_object(),
- "dataset_id": dataset_id,
- "query": query,
- "retrieval_method": retrieval_method,
- "score_threshold": score_threshold,
- "top_k": top_k,
- "reranking_model": reranking_model,
- "all_documents": all_documents,
- "exceptions": exceptions,
- },
- )
- threads.append(full_text_index_thread)
- full_text_index_thread.start()
- for thread in threads:
- thread.join()
- if exceptions:
- exception_message = ";\n".join(exceptions)
- raise Exception(exception_message)
- if retrieval_method == RetrievalMethod.HYBRID_SEARCH.value:
- data_post_processor = DataPostProcessor(
- str(dataset.tenant_id), reranking_mode, reranking_model, weights, False
- )
- all_documents = data_post_processor.invoke(
- query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
- )
- return all_documents
- @classmethod
- def keyword_search(
- cls, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list, exceptions: list
- ):
- with flask_app.app_context():
- try:
- dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
- keyword = Keyword(dataset=dataset)
- documents = keyword.search(cls.escape_query_for_search(query), top_k=top_k)
- all_documents.extend(documents)
- except Exception as e:
- exceptions.append(str(e))
- @classmethod
- def embedding_search(
- cls,
- flask_app: Flask,
- dataset_id: str,
- query: str,
- top_k: int,
- score_threshold: Optional[float],
- reranking_model: Optional[dict],
- all_documents: list,
- retrieval_method: str,
- exceptions: list,
- ):
- with flask_app.app_context():
- try:
- dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
- vector = Vector(dataset=dataset)
- documents = vector.search_by_vector(
- cls.escape_query_for_search(query),
- search_type="similarity_score_threshold",
- top_k=top_k,
- score_threshold=score_threshold,
- filter={"group_id": [dataset.id]},
- )
- if documents:
- if (
- reranking_model
- and reranking_model.get("reranking_model_name")
- and reranking_model.get("reranking_provider_name")
- and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH.value
- ):
- data_post_processor = DataPostProcessor(
- str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
- )
- all_documents.extend(
- data_post_processor.invoke(
- query=query, documents=documents, score_threshold=score_threshold, top_n=len(documents)
- )
- )
- else:
- all_documents.extend(documents)
- except Exception as e:
- exceptions.append(str(e))
- @classmethod
- def full_text_index_search(
- cls,
- flask_app: Flask,
- dataset_id: str,
- query: str,
- top_k: int,
- score_threshold: Optional[float],
- reranking_model: Optional[dict],
- all_documents: list,
- retrieval_method: str,
- exceptions: list,
- ):
- with flask_app.app_context():
- try:
- dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
- vector_processor = Vector(
- dataset=dataset,
- )
- documents = vector_processor.search_by_full_text(cls.escape_query_for_search(query), top_k=top_k)
- if documents:
- if (
- reranking_model
- and reranking_model.get("reranking_model_name")
- and reranking_model.get("reranking_provider_name")
- and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH.value
- ):
- data_post_processor = DataPostProcessor(
- str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
- )
- all_documents.extend(
- data_post_processor.invoke(
- query=query, documents=documents, score_threshold=score_threshold, top_n=len(documents)
- )
- )
- else:
- all_documents.extend(documents)
- except Exception as e:
- exceptions.append(str(e))
- @staticmethod
- def escape_query_for_search(query: str) -> str:
- return query.replace('"', '\\"')
|