model_manager.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531
  1. import logging
  2. import os
  3. from collections.abc import Callable, Generator, Sequence
  4. from typing import IO, Optional, Union, cast
  5. from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
  6. from core.entities.provider_entities import ModelLoadBalancingConfiguration
  7. from core.errors.error import ProviderTokenNotInitError
  8. from core.model_runtime.callbacks.base_callback import Callback
  9. from core.model_runtime.entities.llm_entities import LLMResult
  10. from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
  11. from core.model_runtime.entities.model_entities import ModelType
  12. from core.model_runtime.entities.rerank_entities import RerankResult
  13. from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
  14. from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeConnectionError, InvokeRateLimitError
  15. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  16. from core.model_runtime.model_providers.__base.moderation_model import ModerationModel
  17. from core.model_runtime.model_providers.__base.rerank_model import RerankModel
  18. from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel
  19. from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
  20. from core.model_runtime.model_providers.__base.tts_model import TTSModel
  21. from core.provider_manager import ProviderManager
  22. from extensions.ext_redis import redis_client
  23. from models.provider import ProviderType
  24. logger = logging.getLogger(__name__)
  25. class ModelInstance:
  26. """
  27. Model instance class
  28. """
  29. def __init__(self, provider_model_bundle: ProviderModelBundle, model: str) -> None:
  30. self.provider_model_bundle = provider_model_bundle
  31. self.model = model
  32. self.provider = provider_model_bundle.configuration.provider.provider
  33. self.credentials = self._fetch_credentials_from_bundle(provider_model_bundle, model)
  34. self.model_type_instance = self.provider_model_bundle.model_type_instance
  35. self.load_balancing_manager = self._get_load_balancing_manager(
  36. configuration=provider_model_bundle.configuration,
  37. model_type=provider_model_bundle.model_type_instance.model_type,
  38. model=model,
  39. credentials=self.credentials,
  40. )
  41. @staticmethod
  42. def _fetch_credentials_from_bundle(provider_model_bundle: ProviderModelBundle, model: str) -> dict:
  43. """
  44. Fetch credentials from provider model bundle
  45. :param provider_model_bundle: provider model bundle
  46. :param model: model name
  47. :return:
  48. """
  49. configuration = provider_model_bundle.configuration
  50. model_type = provider_model_bundle.model_type_instance.model_type
  51. credentials = configuration.get_current_credentials(model_type=model_type, model=model)
  52. if credentials is None:
  53. raise ProviderTokenNotInitError(f"Model {model} credentials is not initialized.")
  54. return credentials
  55. @staticmethod
  56. def _get_load_balancing_manager(
  57. configuration: ProviderConfiguration, model_type: ModelType, model: str, credentials: dict
  58. ) -> Optional["LBModelManager"]:
  59. """
  60. Get load balancing model credentials
  61. :param configuration: provider configuration
  62. :param model_type: model type
  63. :param model: model name
  64. :param credentials: model credentials
  65. :return:
  66. """
  67. if configuration.model_settings and configuration.using_provider_type == ProviderType.CUSTOM:
  68. current_model_setting = None
  69. # check if model is disabled by admin
  70. for model_setting in configuration.model_settings:
  71. if model_setting.model_type == model_type and model_setting.model == model:
  72. current_model_setting = model_setting
  73. break
  74. # check if load balancing is enabled
  75. if current_model_setting and current_model_setting.load_balancing_configs:
  76. # use load balancing proxy to choose credentials
  77. lb_model_manager = LBModelManager(
  78. tenant_id=configuration.tenant_id,
  79. provider=configuration.provider.provider,
  80. model_type=model_type,
  81. model=model,
  82. load_balancing_configs=current_model_setting.load_balancing_configs,
  83. managed_credentials=credentials if configuration.custom_configuration.provider else None,
  84. )
  85. return lb_model_manager
  86. return None
  87. def invoke_llm(
  88. self,
  89. prompt_messages: list[PromptMessage],
  90. model_parameters: Optional[dict] = None,
  91. tools: Sequence[PromptMessageTool] | None = None,
  92. stop: Optional[list[str]] = None,
  93. stream: bool = True,
  94. user: Optional[str] = None,
  95. callbacks: Optional[list[Callback]] = None,
  96. ) -> Union[LLMResult, Generator]:
  97. """
  98. Invoke large language model
  99. :param prompt_messages: prompt messages
  100. :param model_parameters: model parameters
  101. :param tools: tools for tool calling
  102. :param stop: stop words
  103. :param stream: is stream response
  104. :param user: unique user id
  105. :param callbacks: callbacks
  106. :return: full response or stream response chunk generator result
  107. """
  108. if not isinstance(self.model_type_instance, LargeLanguageModel):
  109. raise Exception("Model type instance is not LargeLanguageModel")
  110. self.model_type_instance = cast(LargeLanguageModel, self.model_type_instance)
  111. return self._round_robin_invoke(
  112. function=self.model_type_instance.invoke,
  113. model=self.model,
  114. credentials=self.credentials,
  115. prompt_messages=prompt_messages,
  116. model_parameters=model_parameters,
  117. tools=tools,
  118. stop=stop,
  119. stream=stream,
  120. user=user,
  121. callbacks=callbacks,
  122. )
  123. def get_llm_num_tokens(
  124. self, prompt_messages: list[PromptMessage], tools: Optional[list[PromptMessageTool]] = None
  125. ) -> int:
  126. """
  127. Get number of tokens for llm
  128. :param prompt_messages: prompt messages
  129. :param tools: tools for tool calling
  130. :return:
  131. """
  132. if not isinstance(self.model_type_instance, LargeLanguageModel):
  133. raise Exception("Model type instance is not LargeLanguageModel")
  134. self.model_type_instance = cast(LargeLanguageModel, self.model_type_instance)
  135. return self._round_robin_invoke(
  136. function=self.model_type_instance.get_num_tokens,
  137. model=self.model,
  138. credentials=self.credentials,
  139. prompt_messages=prompt_messages,
  140. tools=tools,
  141. )
  142. def invoke_text_embedding(self, texts: list[str], user: Optional[str] = None) -> TextEmbeddingResult:
  143. """
  144. Invoke large language model
  145. :param texts: texts to embed
  146. :param user: unique user id
  147. :return: embeddings result
  148. """
  149. if not isinstance(self.model_type_instance, TextEmbeddingModel):
  150. raise Exception("Model type instance is not TextEmbeddingModel")
  151. self.model_type_instance = cast(TextEmbeddingModel, self.model_type_instance)
  152. return self._round_robin_invoke(
  153. function=self.model_type_instance.invoke,
  154. model=self.model,
  155. credentials=self.credentials,
  156. texts=texts,
  157. user=user,
  158. )
  159. def get_text_embedding_num_tokens(self, texts: list[str]) -> int:
  160. """
  161. Get number of tokens for text embedding
  162. :param texts: texts to embed
  163. :return:
  164. """
  165. if not isinstance(self.model_type_instance, TextEmbeddingModel):
  166. raise Exception("Model type instance is not TextEmbeddingModel")
  167. self.model_type_instance = cast(TextEmbeddingModel, self.model_type_instance)
  168. return self._round_robin_invoke(
  169. function=self.model_type_instance.get_num_tokens,
  170. model=self.model,
  171. credentials=self.credentials,
  172. texts=texts,
  173. )
  174. def invoke_rerank(
  175. self,
  176. query: str,
  177. docs: list[str],
  178. score_threshold: Optional[float] = None,
  179. top_n: Optional[int] = None,
  180. user: Optional[str] = None,
  181. ) -> RerankResult:
  182. """
  183. Invoke rerank model
  184. :param query: search query
  185. :param docs: docs for reranking
  186. :param score_threshold: score threshold
  187. :param top_n: top n
  188. :param user: unique user id
  189. :return: rerank result
  190. """
  191. if not isinstance(self.model_type_instance, RerankModel):
  192. raise Exception("Model type instance is not RerankModel")
  193. self.model_type_instance = cast(RerankModel, self.model_type_instance)
  194. return self._round_robin_invoke(
  195. function=self.model_type_instance.invoke,
  196. model=self.model,
  197. credentials=self.credentials,
  198. query=query,
  199. docs=docs,
  200. score_threshold=score_threshold,
  201. top_n=top_n,
  202. user=user,
  203. )
  204. def invoke_moderation(self, text: str, user: Optional[str] = None) -> bool:
  205. """
  206. Invoke moderation model
  207. :param text: text to moderate
  208. :param user: unique user id
  209. :return: false if text is safe, true otherwise
  210. """
  211. if not isinstance(self.model_type_instance, ModerationModel):
  212. raise Exception("Model type instance is not ModerationModel")
  213. self.model_type_instance = cast(ModerationModel, self.model_type_instance)
  214. return self._round_robin_invoke(
  215. function=self.model_type_instance.invoke,
  216. model=self.model,
  217. credentials=self.credentials,
  218. text=text,
  219. user=user,
  220. )
  221. def invoke_speech2text(self, file: IO[bytes], user: Optional[str] = None) -> str:
  222. """
  223. Invoke large language model
  224. :param file: audio file
  225. :param user: unique user id
  226. :return: text for given audio file
  227. """
  228. if not isinstance(self.model_type_instance, Speech2TextModel):
  229. raise Exception("Model type instance is not Speech2TextModel")
  230. self.model_type_instance = cast(Speech2TextModel, self.model_type_instance)
  231. return self._round_robin_invoke(
  232. function=self.model_type_instance.invoke,
  233. model=self.model,
  234. credentials=self.credentials,
  235. file=file,
  236. user=user,
  237. )
  238. def invoke_tts(self, content_text: str, tenant_id: str, voice: str, user: Optional[str] = None) -> str:
  239. """
  240. Invoke large language tts model
  241. :param content_text: text content to be translated
  242. :param tenant_id: user tenant id
  243. :param voice: model timbre
  244. :param user: unique user id
  245. :return: text for given audio file
  246. """
  247. if not isinstance(self.model_type_instance, TTSModel):
  248. raise Exception("Model type instance is not TTSModel")
  249. self.model_type_instance = cast(TTSModel, self.model_type_instance)
  250. return self._round_robin_invoke(
  251. function=self.model_type_instance.invoke,
  252. model=self.model,
  253. credentials=self.credentials,
  254. content_text=content_text,
  255. user=user,
  256. tenant_id=tenant_id,
  257. voice=voice,
  258. )
  259. def _round_robin_invoke(self, function: Callable, *args, **kwargs):
  260. """
  261. Round-robin invoke
  262. :param function: function to invoke
  263. :param args: function args
  264. :param kwargs: function kwargs
  265. :return:
  266. """
  267. if not self.load_balancing_manager:
  268. return function(*args, **kwargs)
  269. last_exception = None
  270. while True:
  271. lb_config = self.load_balancing_manager.fetch_next()
  272. if not lb_config:
  273. if not last_exception:
  274. raise ProviderTokenNotInitError("Model credentials is not initialized.")
  275. else:
  276. raise last_exception
  277. try:
  278. if "credentials" in kwargs:
  279. del kwargs["credentials"]
  280. return function(*args, **kwargs, credentials=lb_config.credentials)
  281. except InvokeRateLimitError as e:
  282. # expire in 60 seconds
  283. self.load_balancing_manager.cooldown(lb_config, expire=60)
  284. last_exception = e
  285. continue
  286. except (InvokeAuthorizationError, InvokeConnectionError) as e:
  287. # expire in 10 seconds
  288. self.load_balancing_manager.cooldown(lb_config, expire=10)
  289. last_exception = e
  290. continue
  291. except Exception as e:
  292. raise e
  293. def get_tts_voices(self, language: Optional[str] = None) -> list:
  294. """
  295. Invoke large language tts model voices
  296. :param language: tts language
  297. :return: tts model voices
  298. """
  299. if not isinstance(self.model_type_instance, TTSModel):
  300. raise Exception("Model type instance is not TTSModel")
  301. self.model_type_instance = cast(TTSModel, self.model_type_instance)
  302. return self.model_type_instance.get_tts_model_voices(
  303. model=self.model, credentials=self.credentials, language=language
  304. )
  305. class ModelManager:
  306. def __init__(self) -> None:
  307. self._provider_manager = ProviderManager()
  308. def get_model_instance(self, tenant_id: str, provider: str, model_type: ModelType, model: str) -> ModelInstance:
  309. """
  310. Get model instance
  311. :param tenant_id: tenant id
  312. :param provider: provider name
  313. :param model_type: model type
  314. :param model: model name
  315. :return:
  316. """
  317. if not provider:
  318. return self.get_default_model_instance(tenant_id, model_type)
  319. provider_model_bundle = self._provider_manager.get_provider_model_bundle(
  320. tenant_id=tenant_id, provider=provider, model_type=model_type
  321. )
  322. return ModelInstance(provider_model_bundle, model)
  323. def get_default_provider_model_name(self, tenant_id: str, model_type: ModelType) -> tuple[str, str]:
  324. """
  325. Return first provider and the first model in the provider
  326. :param tenant_id: tenant id
  327. :param model_type: model type
  328. :return: provider name, model name
  329. """
  330. return self._provider_manager.get_first_provider_first_model(tenant_id, model_type)
  331. def get_default_model_instance(self, tenant_id: str, model_type: ModelType) -> ModelInstance:
  332. """
  333. Get default model instance
  334. :param tenant_id: tenant id
  335. :param model_type: model type
  336. :return:
  337. """
  338. default_model_entity = self._provider_manager.get_default_model(tenant_id=tenant_id, model_type=model_type)
  339. if not default_model_entity:
  340. raise ProviderTokenNotInitError(f"Default model not found for {model_type}")
  341. return self.get_model_instance(
  342. tenant_id=tenant_id,
  343. provider=default_model_entity.provider.provider,
  344. model_type=model_type,
  345. model=default_model_entity.model,
  346. )
  347. class LBModelManager:
  348. def __init__(
  349. self,
  350. tenant_id: str,
  351. provider: str,
  352. model_type: ModelType,
  353. model: str,
  354. load_balancing_configs: list[ModelLoadBalancingConfiguration],
  355. managed_credentials: Optional[dict] = None,
  356. ) -> None:
  357. """
  358. Load balancing model manager
  359. :param tenant_id: tenant_id
  360. :param provider: provider
  361. :param model_type: model_type
  362. :param model: model name
  363. :param load_balancing_configs: all load balancing configurations
  364. :param managed_credentials: credentials if load balancing configuration name is __inherit__
  365. """
  366. self._tenant_id = tenant_id
  367. self._provider = provider
  368. self._model_type = model_type
  369. self._model = model
  370. self._load_balancing_configs = load_balancing_configs
  371. for load_balancing_config in self._load_balancing_configs[:]: # Iterate over a shallow copy of the list
  372. if load_balancing_config.name == "__inherit__":
  373. if not managed_credentials:
  374. # remove __inherit__ if managed credentials is not provided
  375. self._load_balancing_configs.remove(load_balancing_config)
  376. else:
  377. load_balancing_config.credentials = managed_credentials
  378. def fetch_next(self) -> Optional[ModelLoadBalancingConfiguration]:
  379. """
  380. Get next model load balancing config
  381. Strategy: Round Robin
  382. :return:
  383. """
  384. cache_key = "model_lb_index:{}:{}:{}:{}".format(
  385. self._tenant_id, self._provider, self._model_type.value, self._model
  386. )
  387. cooldown_load_balancing_configs = []
  388. max_index = len(self._load_balancing_configs)
  389. while True:
  390. current_index = redis_client.incr(cache_key)
  391. current_index = cast(int, current_index)
  392. if current_index >= 10000000:
  393. current_index = 1
  394. redis_client.set(cache_key, current_index)
  395. redis_client.expire(cache_key, 3600)
  396. if current_index > max_index:
  397. current_index = current_index % max_index
  398. real_index = current_index - 1
  399. if real_index > max_index:
  400. real_index = 0
  401. config = self._load_balancing_configs[real_index]
  402. if self.in_cooldown(config):
  403. cooldown_load_balancing_configs.append(config)
  404. if len(cooldown_load_balancing_configs) >= len(self._load_balancing_configs):
  405. # all configs are in cooldown
  406. return None
  407. continue
  408. if bool(os.environ.get("DEBUG", "False").lower() == "true"):
  409. logger.info(
  410. f"Model LB\nid: {config.id}\nname:{config.name}\n"
  411. f"tenant_id: {self._tenant_id}\nprovider: {self._provider}\n"
  412. f"model_type: {self._model_type.value}\nmodel: {self._model}"
  413. )
  414. return config
  415. return None
  416. def cooldown(self, config: ModelLoadBalancingConfiguration, expire: int = 60) -> None:
  417. """
  418. Cooldown model load balancing config
  419. :param config: model load balancing config
  420. :param expire: cooldown time
  421. :return:
  422. """
  423. cooldown_cache_key = "model_lb_index:cooldown:{}:{}:{}:{}:{}".format(
  424. self._tenant_id, self._provider, self._model_type.value, self._model, config.id
  425. )
  426. redis_client.setex(cooldown_cache_key, expire, "true")
  427. def in_cooldown(self, config: ModelLoadBalancingConfiguration) -> bool:
  428. """
  429. Check if model load balancing config is in cooldown
  430. :param config: model load balancing config
  431. :return:
  432. """
  433. cooldown_cache_key = "model_lb_index:cooldown:{}:{}:{}:{}:{}".format(
  434. self._tenant_id, self._provider, self._model_type.value, self._model, config.id
  435. )
  436. res = redis_client.exists(cooldown_cache_key)
  437. res = cast(bool, res)
  438. return res
  439. @staticmethod
  440. def get_config_in_cooldown_and_ttl(
  441. tenant_id: str, provider: str, model_type: ModelType, model: str, config_id: str
  442. ) -> tuple[bool, int]:
  443. """
  444. Get model load balancing config is in cooldown and ttl
  445. :param tenant_id: workspace id
  446. :param provider: provider name
  447. :param model_type: model type
  448. :param model: model name
  449. :param config_id: model load balancing config id
  450. :return:
  451. """
  452. cooldown_cache_key = "model_lb_index:cooldown:{}:{}:{}:{}:{}".format(
  453. tenant_id, provider, model_type.value, model, config_id
  454. )
  455. ttl = redis_client.ttl(cooldown_cache_key)
  456. if ttl == -2:
  457. return False, 0
  458. ttl = cast(int, ttl)
  459. return True, ttl