天魂 1df71ec64d refactor(api): switch to dify_config with Pydantic in controllers and schedule (#6237) 1 tahun lalu
..
configs 63e34e5227 feat: support MyScale vector database (#6092) 1 tahun lalu
constants 6ef401a9f0 feat:add tts-streaming config and future (#5492) 1 tahun lalu
controllers 1df71ec64d refactor(api): switch to dify_config with Pydantic in controllers and schedule (#6237) 1 tahun lalu
core a9ee52f2d7 Fix/firecrawl parameters issue (#6213) 1 tahun lalu
docker cb09dbef66 feat: correctly delete applications using Celery workers (#5787) 1 tahun lalu
events cb09dbef66 feat: correctly delete applications using Celery workers (#5787) 1 tahun lalu
extensions 678ad6b7eb Fix/file stream azure blob (#6196) 1 tahun lalu
fields 9622fbb62f feat: app rate limit (#5844) 1 tahun lalu
libs 9622fbb62f feat: app rate limit (#5844) 1 tahun lalu
migrations 9622fbb62f feat: app rate limit (#5844) 1 tahun lalu
models 9622fbb62f feat: app rate limit (#5844) 1 tahun lalu
schedule 1df71ec64d refactor(api): switch to dify_config with Pydantic in controllers and schedule (#6237) 1 tahun lalu
services 7b225a5ab0 refactor(services/tasks): Swtich to dify_config witch Pydantic (#6203) 1 tahun lalu
tasks 7b225a5ab0 refactor(services/tasks): Swtich to dify_config witch Pydantic (#6203) 1 tahun lalu
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 1 tahun lalu
tests 63e34e5227 feat: support MyScale vector database (#6092) 1 tahun lalu
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1 tahun lalu
.env.example 63e34e5227 feat: support MyScale vector database (#6092) 1 tahun lalu
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) 1 tahun lalu
README.md 2d6624cf9e typo: Update README.md (#5987) 1 tahun lalu
app.py d7f75d17cc Chore/remove-unused-code (#5917) 1 tahun lalu
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) 1 tahun lalu
poetry.lock 63e34e5227 feat: support MyScale vector database (#6092) 1 tahun lalu
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 1 tahun lalu
pyproject.toml 63e34e5227 feat: support MyScale vector database (#6092) 1 tahun lalu

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
    secret_key=$(openssl rand -base64 42)
    sed -i '' "/^SECRET_KEY=/c\\
    SECRET_KEY=${secret_key}" .env
    
  3. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies

    poetry env use 3.10
    poetry install
    

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  2. Start Dify web service.

  3. Setup your application by visiting http://localhost:3000...

  4. If you need to debug local async processing, please start the worker service.

    poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion
    

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh