indexing_runner.py 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867
  1. import datetime
  2. import json
  3. import logging
  4. import re
  5. import threading
  6. import time
  7. import uuid
  8. from typing import AbstractSet, Any, Collection, List, Literal, Optional, Type, Union, cast
  9. from core.data_loader.file_extractor import FileExtractor
  10. from core.data_loader.loader.notion import NotionLoader
  11. from core.docstore.dataset_docstore import DatasetDocumentStore
  12. from core.errors.error import ProviderTokenNotInitError
  13. from core.generator.llm_generator import LLMGenerator
  14. from core.index.index import IndexBuilder
  15. from core.model_manager import ModelManager
  16. from core.model_runtime.entities.model_entities import ModelType, PriceType
  17. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  18. from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
  19. from core.model_runtime.model_providers.__base.tokenizers.gpt2_tokenzier import GPT2Tokenizer
  20. from core.spiltter.fixed_text_splitter import EnhanceRecursiveCharacterTextSplitter, FixedRecursiveCharacterTextSplitter
  21. from extensions.ext_database import db
  22. from extensions.ext_redis import redis_client
  23. from extensions.ext_storage import storage
  24. from flask import Flask, current_app
  25. from flask_login import current_user
  26. from langchain.schema import Document
  27. from langchain.text_splitter import TS, TextSplitter, TokenTextSplitter
  28. from libs import helper
  29. from models.dataset import Dataset, DatasetProcessRule
  30. from models.dataset import Document as DatasetDocument
  31. from models.dataset import DocumentSegment
  32. from models.model import UploadFile
  33. from models.source import DataSourceBinding
  34. from sqlalchemy.orm.exc import ObjectDeletedError
  35. class IndexingRunner:
  36. def __init__(self):
  37. self.storage = storage
  38. self.model_manager = ModelManager()
  39. def run(self, dataset_documents: List[DatasetDocument]):
  40. """Run the indexing process."""
  41. for dataset_document in dataset_documents:
  42. try:
  43. # get dataset
  44. dataset = Dataset.query.filter_by(
  45. id=dataset_document.dataset_id
  46. ).first()
  47. if not dataset:
  48. raise ValueError("no dataset found")
  49. # get the process rule
  50. processing_rule = db.session.query(DatasetProcessRule). \
  51. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  52. first()
  53. # load file
  54. text_docs = self._load_data(dataset_document, processing_rule.mode == 'automatic')
  55. # get splitter
  56. splitter = self._get_splitter(processing_rule)
  57. # split to documents
  58. documents = self._step_split(
  59. text_docs=text_docs,
  60. splitter=splitter,
  61. dataset=dataset,
  62. dataset_document=dataset_document,
  63. processing_rule=processing_rule
  64. )
  65. self._build_index(
  66. dataset=dataset,
  67. dataset_document=dataset_document,
  68. documents=documents
  69. )
  70. except DocumentIsPausedException:
  71. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  72. except ProviderTokenNotInitError as e:
  73. dataset_document.indexing_status = 'error'
  74. dataset_document.error = str(e.description)
  75. dataset_document.stopped_at = datetime.datetime.utcnow()
  76. db.session.commit()
  77. except ObjectDeletedError:
  78. logging.warning('Document deleted, document id: {}'.format(dataset_document.id))
  79. except Exception as e:
  80. logging.exception("consume document failed")
  81. dataset_document.indexing_status = 'error'
  82. dataset_document.error = str(e)
  83. dataset_document.stopped_at = datetime.datetime.utcnow()
  84. db.session.commit()
  85. def run_in_splitting_status(self, dataset_document: DatasetDocument):
  86. """Run the indexing process when the index_status is splitting."""
  87. try:
  88. # get dataset
  89. dataset = Dataset.query.filter_by(
  90. id=dataset_document.dataset_id
  91. ).first()
  92. if not dataset:
  93. raise ValueError("no dataset found")
  94. # get exist document_segment list and delete
  95. document_segments = DocumentSegment.query.filter_by(
  96. dataset_id=dataset.id,
  97. document_id=dataset_document.id
  98. ).all()
  99. for document_segment in document_segments:
  100. db.session.delete(document_segment)
  101. db.session.commit()
  102. # get the process rule
  103. processing_rule = db.session.query(DatasetProcessRule). \
  104. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  105. first()
  106. # load file
  107. text_docs = self._load_data(dataset_document, processing_rule.mode == 'automatic')
  108. # get splitter
  109. splitter = self._get_splitter(processing_rule)
  110. # split to documents
  111. documents = self._step_split(
  112. text_docs=text_docs,
  113. splitter=splitter,
  114. dataset=dataset,
  115. dataset_document=dataset_document,
  116. processing_rule=processing_rule
  117. )
  118. # build index
  119. self._build_index(
  120. dataset=dataset,
  121. dataset_document=dataset_document,
  122. documents=documents
  123. )
  124. except DocumentIsPausedException:
  125. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  126. except ProviderTokenNotInitError as e:
  127. dataset_document.indexing_status = 'error'
  128. dataset_document.error = str(e.description)
  129. dataset_document.stopped_at = datetime.datetime.utcnow()
  130. db.session.commit()
  131. except Exception as e:
  132. logging.exception("consume document failed")
  133. dataset_document.indexing_status = 'error'
  134. dataset_document.error = str(e)
  135. dataset_document.stopped_at = datetime.datetime.utcnow()
  136. db.session.commit()
  137. def run_in_indexing_status(self, dataset_document: DatasetDocument):
  138. """Run the indexing process when the index_status is indexing."""
  139. try:
  140. # get dataset
  141. dataset = Dataset.query.filter_by(
  142. id=dataset_document.dataset_id
  143. ).first()
  144. if not dataset:
  145. raise ValueError("no dataset found")
  146. # get exist document_segment list and delete
  147. document_segments = DocumentSegment.query.filter_by(
  148. dataset_id=dataset.id,
  149. document_id=dataset_document.id
  150. ).all()
  151. documents = []
  152. if document_segments:
  153. for document_segment in document_segments:
  154. # transform segment to node
  155. if document_segment.status != "completed":
  156. document = Document(
  157. page_content=document_segment.content,
  158. metadata={
  159. "doc_id": document_segment.index_node_id,
  160. "doc_hash": document_segment.index_node_hash,
  161. "document_id": document_segment.document_id,
  162. "dataset_id": document_segment.dataset_id,
  163. }
  164. )
  165. documents.append(document)
  166. # build index
  167. self._build_index(
  168. dataset=dataset,
  169. dataset_document=dataset_document,
  170. documents=documents
  171. )
  172. except DocumentIsPausedException:
  173. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  174. except ProviderTokenNotInitError as e:
  175. dataset_document.indexing_status = 'error'
  176. dataset_document.error = str(e.description)
  177. dataset_document.stopped_at = datetime.datetime.utcnow()
  178. db.session.commit()
  179. except Exception as e:
  180. logging.exception("consume document failed")
  181. dataset_document.indexing_status = 'error'
  182. dataset_document.error = str(e)
  183. dataset_document.stopped_at = datetime.datetime.utcnow()
  184. db.session.commit()
  185. def file_indexing_estimate(self, tenant_id: str, file_details: List[UploadFile], tmp_processing_rule: dict,
  186. doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
  187. indexing_technique: str = 'economy') -> dict:
  188. """
  189. Estimate the indexing for the document.
  190. """
  191. embedding_model_instance = None
  192. if dataset_id:
  193. dataset = Dataset.query.filter_by(
  194. id=dataset_id
  195. ).first()
  196. if not dataset:
  197. raise ValueError('Dataset not found.')
  198. if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
  199. if dataset.embedding_model_provider:
  200. embedding_model_instance = self.model_manager.get_model_instance(
  201. tenant_id=tenant_id,
  202. provider=dataset.embedding_model_provider,
  203. model_type=ModelType.TEXT_EMBEDDING,
  204. model=dataset.embedding_model
  205. )
  206. else:
  207. embedding_model_instance = self.model_manager.get_default_model_instance(
  208. tenant_id=tenant_id,
  209. model_type=ModelType.TEXT_EMBEDDING,
  210. )
  211. else:
  212. if indexing_technique == 'high_quality':
  213. embedding_model_instance = self.model_manager.get_default_model_instance(
  214. tenant_id=tenant_id,
  215. model_type=ModelType.TEXT_EMBEDDING,
  216. )
  217. tokens = 0
  218. preview_texts = []
  219. total_segments = 0
  220. for file_detail in file_details:
  221. processing_rule = DatasetProcessRule(
  222. mode=tmp_processing_rule["mode"],
  223. rules=json.dumps(tmp_processing_rule["rules"])
  224. )
  225. # load data from file
  226. text_docs = FileExtractor.load(file_detail, is_automatic=processing_rule.mode == 'automatic')
  227. # get splitter
  228. splitter = self._get_splitter(processing_rule)
  229. # split to documents
  230. documents = self._split_to_documents_for_estimate(
  231. text_docs=text_docs,
  232. splitter=splitter,
  233. processing_rule=processing_rule
  234. )
  235. total_segments += len(documents)
  236. for document in documents:
  237. if len(preview_texts) < 5:
  238. preview_texts.append(document.page_content)
  239. if indexing_technique == 'high_quality' or embedding_model_instance:
  240. embedding_model_type_instance = embedding_model_instance.model_type_instance
  241. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
  242. tokens += embedding_model_type_instance.get_num_tokens(
  243. model=embedding_model_instance.model,
  244. credentials=embedding_model_instance.credentials,
  245. texts=[self.filter_string(document.page_content)]
  246. )
  247. if doc_form and doc_form == 'qa_model':
  248. model_instance = self.model_manager.get_default_model_instance(
  249. tenant_id=tenant_id,
  250. model_type=ModelType.LLM
  251. )
  252. model_type_instance = model_instance.model_type_instance
  253. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  254. if len(preview_texts) > 0:
  255. # qa model document
  256. response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
  257. doc_language)
  258. document_qa_list = self.format_split_text(response)
  259. price_info = model_type_instance.get_price(
  260. model=model_instance.model,
  261. credentials=model_instance.credentials,
  262. price_type=PriceType.INPUT,
  263. tokens=total_segments * 2000,
  264. )
  265. return {
  266. "total_segments": total_segments * 20,
  267. "tokens": total_segments * 2000,
  268. "total_price": '{:f}'.format(price_info.total_amount),
  269. "currency": price_info.currency,
  270. "qa_preview": document_qa_list,
  271. "preview": preview_texts
  272. }
  273. if embedding_model_instance:
  274. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_instance.model_type_instance)
  275. embedding_price_info = embedding_model_type_instance.get_price(
  276. model=embedding_model_instance.model,
  277. credentials=embedding_model_instance.credentials,
  278. price_type=PriceType.INPUT,
  279. tokens=tokens
  280. )
  281. return {
  282. "total_segments": total_segments,
  283. "tokens": tokens,
  284. "total_price": '{:f}'.format(embedding_price_info.total_amount) if embedding_model_instance else 0,
  285. "currency": embedding_price_info.currency if embedding_model_instance else 'USD',
  286. "preview": preview_texts
  287. }
  288. def notion_indexing_estimate(self, tenant_id: str, notion_info_list: list, tmp_processing_rule: dict,
  289. doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
  290. indexing_technique: str = 'economy') -> dict:
  291. """
  292. Estimate the indexing for the document.
  293. """
  294. embedding_model_instance = None
  295. if dataset_id:
  296. dataset = Dataset.query.filter_by(
  297. id=dataset_id
  298. ).first()
  299. if not dataset:
  300. raise ValueError('Dataset not found.')
  301. if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
  302. if dataset.embedding_model_provider:
  303. embedding_model_instance = self.model_manager.get_model_instance(
  304. tenant_id=tenant_id,
  305. provider=dataset.embedding_model_provider,
  306. model_type=ModelType.TEXT_EMBEDDING,
  307. model=dataset.embedding_model
  308. )
  309. else:
  310. embedding_model_instance = self.model_manager.get_default_model_instance(
  311. tenant_id=tenant_id,
  312. model_type=ModelType.TEXT_EMBEDDING,
  313. )
  314. else:
  315. if indexing_technique == 'high_quality':
  316. embedding_model_instance = self.model_manager.get_default_model_instance(
  317. tenant_id=tenant_id,
  318. model_type=ModelType.TEXT_EMBEDDING
  319. )
  320. # load data from notion
  321. tokens = 0
  322. preview_texts = []
  323. total_segments = 0
  324. for notion_info in notion_info_list:
  325. workspace_id = notion_info['workspace_id']
  326. data_source_binding = DataSourceBinding.query.filter(
  327. db.and_(
  328. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  329. DataSourceBinding.provider == 'notion',
  330. DataSourceBinding.disabled == False,
  331. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  332. )
  333. ).first()
  334. if not data_source_binding:
  335. raise ValueError('Data source binding not found.')
  336. for page in notion_info['pages']:
  337. loader = NotionLoader(
  338. notion_access_token=data_source_binding.access_token,
  339. notion_workspace_id=workspace_id,
  340. notion_obj_id=page['page_id'],
  341. notion_page_type=page['type']
  342. )
  343. documents = loader.load()
  344. processing_rule = DatasetProcessRule(
  345. mode=tmp_processing_rule["mode"],
  346. rules=json.dumps(tmp_processing_rule["rules"])
  347. )
  348. # get splitter
  349. splitter = self._get_splitter(processing_rule)
  350. # split to documents
  351. documents = self._split_to_documents_for_estimate(
  352. text_docs=documents,
  353. splitter=splitter,
  354. processing_rule=processing_rule
  355. )
  356. total_segments += len(documents)
  357. embedding_model_type_instance = None
  358. if embedding_model_instance:
  359. embedding_model_type_instance = embedding_model_instance.model_type_instance
  360. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
  361. for document in documents:
  362. if len(preview_texts) < 5:
  363. preview_texts.append(document.page_content)
  364. if indexing_technique == 'high_quality' and embedding_model_type_instance:
  365. tokens += embedding_model_type_instance.get_num_tokens(
  366. model=embedding_model_instance.model,
  367. credentials=embedding_model_instance.credentials,
  368. texts=[document.page_content]
  369. )
  370. if doc_form and doc_form == 'qa_model':
  371. model_instance = self.model_manager.get_default_model_instance(
  372. tenant_id=tenant_id,
  373. model_type=ModelType.LLM
  374. )
  375. model_type_instance = model_instance.model_type_instance
  376. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  377. if len(preview_texts) > 0:
  378. # qa model document
  379. response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
  380. doc_language)
  381. document_qa_list = self.format_split_text(response)
  382. price_info = model_type_instance.get_price(
  383. model=model_instance.model,
  384. credentials=model_instance.credentials,
  385. price_type=PriceType.INPUT,
  386. tokens=total_segments * 2000,
  387. )
  388. return {
  389. "total_segments": total_segments * 20,
  390. "tokens": total_segments * 2000,
  391. "total_price": '{:f}'.format(price_info.total_amount),
  392. "currency": price_info.currency,
  393. "qa_preview": document_qa_list,
  394. "preview": preview_texts
  395. }
  396. embedding_model_type_instance = embedding_model_instance.model_type_instance
  397. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
  398. embedding_price_info = embedding_model_type_instance.get_price(
  399. model=embedding_model_instance.model,
  400. credentials=embedding_model_instance.credentials,
  401. price_type=PriceType.INPUT,
  402. tokens=tokens
  403. )
  404. return {
  405. "total_segments": total_segments,
  406. "tokens": tokens,
  407. "total_price": '{:f}'.format(embedding_price_info.total_amount) if embedding_model_instance else 0,
  408. "currency": embedding_price_info.currency if embedding_model_instance else 'USD',
  409. "preview": preview_texts
  410. }
  411. def _load_data(self, dataset_document: DatasetDocument, automatic: bool = False) -> List[Document]:
  412. # load file
  413. if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
  414. return []
  415. data_source_info = dataset_document.data_source_info_dict
  416. text_docs = []
  417. if dataset_document.data_source_type == 'upload_file':
  418. if not data_source_info or 'upload_file_id' not in data_source_info:
  419. raise ValueError("no upload file found")
  420. file_detail = db.session.query(UploadFile). \
  421. filter(UploadFile.id == data_source_info['upload_file_id']). \
  422. one_or_none()
  423. if file_detail:
  424. text_docs = FileExtractor.load(file_detail, is_automatic=automatic)
  425. elif dataset_document.data_source_type == 'notion_import':
  426. loader = NotionLoader.from_document(dataset_document)
  427. text_docs = loader.load()
  428. # update document status to splitting
  429. self._update_document_index_status(
  430. document_id=dataset_document.id,
  431. after_indexing_status="splitting",
  432. extra_update_params={
  433. DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
  434. DatasetDocument.parsing_completed_at: datetime.datetime.utcnow()
  435. }
  436. )
  437. # replace doc id to document model id
  438. text_docs = cast(List[Document], text_docs)
  439. for text_doc in text_docs:
  440. # remove invalid symbol
  441. text_doc.page_content = self.filter_string(text_doc.page_content)
  442. text_doc.metadata['document_id'] = dataset_document.id
  443. text_doc.metadata['dataset_id'] = dataset_document.dataset_id
  444. return text_docs
  445. def filter_string(self, text):
  446. text = re.sub(r'<\|', '<', text)
  447. text = re.sub(r'\|>', '>', text)
  448. text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]', '', text)
  449. return text
  450. def _get_splitter(self, processing_rule: DatasetProcessRule) -> TextSplitter:
  451. """
  452. Get the NodeParser object according to the processing rule.
  453. """
  454. if processing_rule.mode == "custom":
  455. # The user-defined segmentation rule
  456. rules = json.loads(processing_rule.rules)
  457. segmentation = rules["segmentation"]
  458. if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
  459. raise ValueError("Custom segment length should be between 50 and 1000.")
  460. separator = segmentation["separator"]
  461. if separator:
  462. separator = separator.replace('\\n', '\n')
  463. character_splitter = FixedRecursiveCharacterTextSplitter.from_gpt2_encoder(
  464. chunk_size=segmentation["max_tokens"],
  465. chunk_overlap=0,
  466. fixed_separator=separator,
  467. separators=["\n\n", "。", ".", " ", ""]
  468. )
  469. else:
  470. # Automatic segmentation
  471. character_splitter = EnhanceRecursiveCharacterTextSplitter.from_gpt2_encoder(
  472. chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
  473. chunk_overlap=0,
  474. separators=["\n\n", "。", ".", " ", ""]
  475. )
  476. return character_splitter
  477. def _step_split(self, text_docs: List[Document], splitter: TextSplitter,
  478. dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
  479. -> List[Document]:
  480. """
  481. Split the text documents into documents and save them to the document segment.
  482. """
  483. documents = self._split_to_documents(
  484. text_docs=text_docs,
  485. splitter=splitter,
  486. processing_rule=processing_rule,
  487. tenant_id=dataset.tenant_id,
  488. document_form=dataset_document.doc_form,
  489. document_language=dataset_document.doc_language
  490. )
  491. # save node to document segment
  492. doc_store = DatasetDocumentStore(
  493. dataset=dataset,
  494. user_id=dataset_document.created_by,
  495. document_id=dataset_document.id
  496. )
  497. # add document segments
  498. doc_store.add_documents(documents)
  499. # update document status to indexing
  500. cur_time = datetime.datetime.utcnow()
  501. self._update_document_index_status(
  502. document_id=dataset_document.id,
  503. after_indexing_status="indexing",
  504. extra_update_params={
  505. DatasetDocument.cleaning_completed_at: cur_time,
  506. DatasetDocument.splitting_completed_at: cur_time,
  507. }
  508. )
  509. # update segment status to indexing
  510. self._update_segments_by_document(
  511. dataset_document_id=dataset_document.id,
  512. update_params={
  513. DocumentSegment.status: "indexing",
  514. DocumentSegment.indexing_at: datetime.datetime.utcnow()
  515. }
  516. )
  517. return documents
  518. def _split_to_documents(self, text_docs: List[Document], splitter: TextSplitter,
  519. processing_rule: DatasetProcessRule, tenant_id: str,
  520. document_form: str, document_language: str) -> List[Document]:
  521. """
  522. Split the text documents into nodes.
  523. """
  524. all_documents = []
  525. all_qa_documents = []
  526. for text_doc in text_docs:
  527. # document clean
  528. document_text = self._document_clean(text_doc.page_content, processing_rule)
  529. text_doc.page_content = document_text
  530. # parse document to nodes
  531. documents = splitter.split_documents([text_doc])
  532. split_documents = []
  533. for document_node in documents:
  534. if document_node.page_content.strip():
  535. doc_id = str(uuid.uuid4())
  536. hash = helper.generate_text_hash(document_node.page_content)
  537. document_node.metadata['doc_id'] = doc_id
  538. document_node.metadata['doc_hash'] = hash
  539. # delete Spliter character
  540. page_content = document_node.page_content
  541. if page_content.startswith(".") or page_content.startswith("。"):
  542. page_content = page_content[1:]
  543. else:
  544. page_content = page_content
  545. document_node.page_content = page_content
  546. split_documents.append(document_node)
  547. all_documents.extend(split_documents)
  548. # processing qa document
  549. if document_form == 'qa_model':
  550. for i in range(0, len(all_documents), 10):
  551. threads = []
  552. sub_documents = all_documents[i:i + 10]
  553. for doc in sub_documents:
  554. document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
  555. 'flask_app': current_app._get_current_object(),
  556. 'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
  557. 'document_language': document_language})
  558. threads.append(document_format_thread)
  559. document_format_thread.start()
  560. for thread in threads:
  561. thread.join()
  562. return all_qa_documents
  563. return all_documents
  564. def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
  565. format_documents = []
  566. if document_node.page_content is None or not document_node.page_content.strip():
  567. return
  568. with flask_app.app_context():
  569. try:
  570. # qa model document
  571. response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
  572. document_qa_list = self.format_split_text(response)
  573. qa_documents = []
  574. for result in document_qa_list:
  575. qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
  576. doc_id = str(uuid.uuid4())
  577. hash = helper.generate_text_hash(result['question'])
  578. qa_document.metadata['answer'] = result['answer']
  579. qa_document.metadata['doc_id'] = doc_id
  580. qa_document.metadata['doc_hash'] = hash
  581. qa_documents.append(qa_document)
  582. format_documents.extend(qa_documents)
  583. except Exception as e:
  584. logging.exception(e)
  585. all_qa_documents.extend(format_documents)
  586. def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter,
  587. processing_rule: DatasetProcessRule) -> List[Document]:
  588. """
  589. Split the text documents into nodes.
  590. """
  591. all_documents = []
  592. for text_doc in text_docs:
  593. # document clean
  594. document_text = self._document_clean(text_doc.page_content, processing_rule)
  595. text_doc.page_content = document_text
  596. # parse document to nodes
  597. documents = splitter.split_documents([text_doc])
  598. split_documents = []
  599. for document in documents:
  600. if document.page_content is None or not document.page_content.strip():
  601. continue
  602. doc_id = str(uuid.uuid4())
  603. hash = helper.generate_text_hash(document.page_content)
  604. document.metadata['doc_id'] = doc_id
  605. document.metadata['doc_hash'] = hash
  606. split_documents.append(document)
  607. all_documents.extend(split_documents)
  608. return all_documents
  609. def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
  610. """
  611. Clean the document text according to the processing rules.
  612. """
  613. if processing_rule.mode == "automatic":
  614. rules = DatasetProcessRule.AUTOMATIC_RULES
  615. else:
  616. rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
  617. if 'pre_processing_rules' in rules:
  618. pre_processing_rules = rules["pre_processing_rules"]
  619. for pre_processing_rule in pre_processing_rules:
  620. if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
  621. # Remove extra spaces
  622. pattern = r'\n{3,}'
  623. text = re.sub(pattern, '\n\n', text)
  624. pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
  625. text = re.sub(pattern, ' ', text)
  626. elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
  627. # Remove email
  628. pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
  629. text = re.sub(pattern, '', text)
  630. # Remove URL
  631. pattern = r'https?://[^\s]+'
  632. text = re.sub(pattern, '', text)
  633. return text
  634. def format_split_text(self, text):
  635. regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
  636. matches = re.findall(regex, text, re.UNICODE)
  637. return [
  638. {
  639. "question": q,
  640. "answer": re.sub(r"\n\s*", "\n", a.strip())
  641. }
  642. for q, a in matches if q and a
  643. ]
  644. def _build_index(self, dataset: Dataset, dataset_document: DatasetDocument, documents: List[Document]) -> None:
  645. """
  646. Build the index for the document.
  647. """
  648. vector_index = IndexBuilder.get_index(dataset, 'high_quality')
  649. keyword_table_index = IndexBuilder.get_index(dataset, 'economy')
  650. embedding_model_instance = None
  651. if dataset.indexing_technique == 'high_quality':
  652. embedding_model_instance = self.model_manager.get_model_instance(
  653. tenant_id=dataset.tenant_id,
  654. provider=dataset.embedding_model_provider,
  655. model_type=ModelType.TEXT_EMBEDDING,
  656. model=dataset.embedding_model
  657. )
  658. # chunk nodes by chunk size
  659. indexing_start_at = time.perf_counter()
  660. tokens = 0
  661. chunk_size = 100
  662. embedding_model_type_instance = None
  663. if embedding_model_instance:
  664. embedding_model_type_instance = embedding_model_instance.model_type_instance
  665. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
  666. for i in range(0, len(documents), chunk_size):
  667. # check document is paused
  668. self._check_document_paused_status(dataset_document.id)
  669. chunk_documents = documents[i:i + chunk_size]
  670. if dataset.indexing_technique == 'high_quality' or embedding_model_type_instance:
  671. tokens += sum(
  672. embedding_model_type_instance.get_num_tokens(
  673. embedding_model_instance.model,
  674. embedding_model_instance.credentials,
  675. [document.page_content]
  676. )
  677. for document in chunk_documents
  678. )
  679. # save vector index
  680. if vector_index:
  681. vector_index.add_texts(chunk_documents)
  682. # save keyword index
  683. keyword_table_index.add_texts(chunk_documents)
  684. document_ids = [document.metadata['doc_id'] for document in chunk_documents]
  685. db.session.query(DocumentSegment).filter(
  686. DocumentSegment.document_id == dataset_document.id,
  687. DocumentSegment.index_node_id.in_(document_ids),
  688. DocumentSegment.status == "indexing"
  689. ).update({
  690. DocumentSegment.status: "completed",
  691. DocumentSegment.enabled: True,
  692. DocumentSegment.completed_at: datetime.datetime.utcnow()
  693. })
  694. db.session.commit()
  695. indexing_end_at = time.perf_counter()
  696. # update document status to completed
  697. self._update_document_index_status(
  698. document_id=dataset_document.id,
  699. after_indexing_status="completed",
  700. extra_update_params={
  701. DatasetDocument.tokens: tokens,
  702. DatasetDocument.completed_at: datetime.datetime.utcnow(),
  703. DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
  704. }
  705. )
  706. def _check_document_paused_status(self, document_id: str):
  707. indexing_cache_key = 'document_{}_is_paused'.format(document_id)
  708. result = redis_client.get(indexing_cache_key)
  709. if result:
  710. raise DocumentIsPausedException()
  711. def _update_document_index_status(self, document_id: str, after_indexing_status: str,
  712. extra_update_params: Optional[dict] = None) -> None:
  713. """
  714. Update the document indexing status.
  715. """
  716. count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
  717. if count > 0:
  718. raise DocumentIsPausedException()
  719. document = DatasetDocument.query.filter_by(id=document_id).first()
  720. if not document:
  721. raise DocumentIsDeletedPausedException()
  722. update_params = {
  723. DatasetDocument.indexing_status: after_indexing_status
  724. }
  725. if extra_update_params:
  726. update_params.update(extra_update_params)
  727. DatasetDocument.query.filter_by(id=document_id).update(update_params)
  728. db.session.commit()
  729. def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
  730. """
  731. Update the document segment by document id.
  732. """
  733. DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
  734. db.session.commit()
  735. def batch_add_segments(self, segments: List[DocumentSegment], dataset: Dataset):
  736. """
  737. Batch add segments index processing
  738. """
  739. documents = []
  740. for segment in segments:
  741. document = Document(
  742. page_content=segment.content,
  743. metadata={
  744. "doc_id": segment.index_node_id,
  745. "doc_hash": segment.index_node_hash,
  746. "document_id": segment.document_id,
  747. "dataset_id": segment.dataset_id,
  748. }
  749. )
  750. documents.append(document)
  751. # save vector index
  752. index = IndexBuilder.get_index(dataset, 'high_quality')
  753. if index:
  754. index.add_texts(documents, duplicate_check=True)
  755. # save keyword index
  756. index = IndexBuilder.get_index(dataset, 'economy')
  757. if index:
  758. index.add_texts(documents)
  759. class DocumentIsPausedException(Exception):
  760. pass
  761. class DocumentIsDeletedPausedException(Exception):
  762. pass