orchestrator_rule_parser.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. from typing import Optional
  2. from langchain import WikipediaAPIWrapper
  3. from langchain.callbacks.manager import Callbacks
  4. from langchain.memory.chat_memory import BaseChatMemory
  5. from langchain.tools import BaseTool, Tool, WikipediaQueryRun
  6. from pydantic import BaseModel, Field
  7. from core.agent.agent_executor import AgentExecutor, PlanningStrategy, AgentConfiguration
  8. from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
  9. from core.callback_handler.dataset_tool_callback_handler import DatasetToolCallbackHandler
  10. from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
  11. from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
  12. from core.conversation_message_task import ConversationMessageTask
  13. from core.model_providers.error import ProviderTokenNotInitError
  14. from core.model_providers.model_factory import ModelFactory
  15. from core.model_providers.models.entity.model_params import ModelKwargs, ModelMode
  16. from core.model_providers.models.llm.base import BaseLLM
  17. from core.tool.current_datetime_tool import DatetimeTool
  18. from core.tool.dataset_retriever_tool import DatasetRetrieverTool
  19. from core.tool.provider.serpapi_provider import SerpAPIToolProvider
  20. from core.tool.serpapi_wrapper import OptimizedSerpAPIWrapper, OptimizedSerpAPIInput
  21. from core.tool.web_reader_tool import WebReaderTool
  22. from extensions.ext_database import db
  23. from models.dataset import Dataset, DatasetProcessRule
  24. from models.model import AppModelConfig
  25. class OrchestratorRuleParser:
  26. """Parse the orchestrator rule to entities."""
  27. def __init__(self, tenant_id: str, app_model_config: AppModelConfig):
  28. self.tenant_id = tenant_id
  29. self.app_model_config = app_model_config
  30. def to_agent_executor(self, conversation_message_task: ConversationMessageTask, memory: Optional[BaseChatMemory],
  31. rest_tokens: int, chain_callback: MainChainGatherCallbackHandler,
  32. retriever_from: str = 'dev') -> Optional[AgentExecutor]:
  33. if not self.app_model_config.agent_mode_dict:
  34. return None
  35. agent_mode_config = self.app_model_config.agent_mode_dict
  36. model_dict = self.app_model_config.model_dict
  37. return_resource = self.app_model_config.retriever_resource_dict.get('enabled', False)
  38. chain = None
  39. if agent_mode_config and agent_mode_config.get('enabled'):
  40. tool_configs = agent_mode_config.get('tools', [])
  41. agent_provider_name = model_dict.get('provider', 'openai')
  42. agent_model_name = model_dict.get('name', 'gpt-4')
  43. dataset_configs = self.app_model_config.dataset_configs_dict
  44. agent_model_instance = ModelFactory.get_text_generation_model(
  45. tenant_id=self.tenant_id,
  46. model_provider_name=agent_provider_name,
  47. model_name=agent_model_name,
  48. model_kwargs=ModelKwargs(
  49. temperature=0.2,
  50. top_p=0.3,
  51. max_tokens=1500
  52. )
  53. )
  54. # add agent callback to record agent thoughts
  55. agent_callback = AgentLoopGatherCallbackHandler(
  56. model_instance=agent_model_instance,
  57. conversation_message_task=conversation_message_task
  58. )
  59. chain_callback.agent_callback = agent_callback
  60. agent_model_instance.add_callbacks([agent_callback])
  61. planning_strategy = PlanningStrategy(agent_mode_config.get('strategy', 'router'))
  62. # only OpenAI chat model (include Azure) support function call, use ReACT instead
  63. if agent_model_instance.model_mode != ModelMode.CHAT \
  64. or agent_model_instance.model_provider.provider_name not in ['openai', 'azure_openai']:
  65. if planning_strategy == PlanningStrategy.FUNCTION_CALL:
  66. planning_strategy = PlanningStrategy.REACT
  67. elif planning_strategy == PlanningStrategy.ROUTER:
  68. planning_strategy = PlanningStrategy.REACT_ROUTER
  69. try:
  70. summary_model_instance = ModelFactory.get_text_generation_model(
  71. tenant_id=self.tenant_id,
  72. model_provider_name=agent_provider_name,
  73. model_name=agent_model_name,
  74. model_kwargs=ModelKwargs(
  75. temperature=0,
  76. max_tokens=500
  77. ),
  78. deduct_quota=False
  79. )
  80. except ProviderTokenNotInitError as e:
  81. summary_model_instance = None
  82. tools = self.to_tools(
  83. tool_configs=tool_configs,
  84. callbacks=[agent_callback, DifyStdOutCallbackHandler()],
  85. agent_model_instance=agent_model_instance,
  86. conversation_message_task=conversation_message_task,
  87. rest_tokens=rest_tokens,
  88. return_resource=return_resource,
  89. retriever_from=retriever_from,
  90. dataset_configs=dataset_configs
  91. )
  92. if len(tools) == 0:
  93. return None
  94. agent_configuration = AgentConfiguration(
  95. strategy=planning_strategy,
  96. model_instance=agent_model_instance,
  97. tools=tools,
  98. summary_model_instance=summary_model_instance,
  99. memory=memory,
  100. callbacks=[chain_callback, agent_callback],
  101. max_iterations=10,
  102. max_execution_time=400.0,
  103. early_stopping_method="generate"
  104. )
  105. return AgentExecutor(agent_configuration)
  106. return chain
  107. def to_tools(self, tool_configs: list, callbacks: Callbacks = None, **kwargs) -> list[BaseTool]:
  108. """
  109. Convert app agent tool configs to tools
  110. :param tool_configs: app agent tool configs
  111. :param callbacks:
  112. :return:
  113. """
  114. tools = []
  115. for tool_config in tool_configs:
  116. tool_type = list(tool_config.keys())[0]
  117. tool_val = list(tool_config.values())[0]
  118. if not tool_val.get("enabled") or tool_val.get("enabled") is not True:
  119. continue
  120. tool = None
  121. if tool_type == "dataset":
  122. tool = self.to_dataset_retriever_tool(tool_config=tool_val, **kwargs)
  123. elif tool_type == "web_reader":
  124. tool = self.to_web_reader_tool(tool_config=tool_val, **kwargs)
  125. elif tool_type == "google_search":
  126. tool = self.to_google_search_tool(tool_config=tool_val, **kwargs)
  127. elif tool_type == "wikipedia":
  128. tool = self.to_wikipedia_tool(tool_config=tool_val, **kwargs)
  129. elif tool_type == "current_datetime":
  130. tool = self.to_current_datetime_tool(tool_config=tool_val, **kwargs)
  131. if tool:
  132. if tool.callbacks is not None:
  133. tool.callbacks.extend(callbacks)
  134. else:
  135. tool.callbacks = callbacks
  136. tools.append(tool)
  137. return tools
  138. def to_dataset_retriever_tool(self, tool_config: dict, conversation_message_task: ConversationMessageTask,
  139. dataset_configs: dict, rest_tokens: int,
  140. return_resource: bool = False, retriever_from: str = 'dev',
  141. **kwargs) \
  142. -> Optional[BaseTool]:
  143. """
  144. A dataset tool is a tool that can be used to retrieve information from a dataset
  145. :param rest_tokens:
  146. :param tool_config:
  147. :param dataset_configs:
  148. :param conversation_message_task:
  149. :param return_resource:
  150. :param retriever_from:
  151. :return:
  152. """
  153. # get dataset from dataset id
  154. dataset = db.session.query(Dataset).filter(
  155. Dataset.tenant_id == self.tenant_id,
  156. Dataset.id == tool_config.get("id")
  157. ).first()
  158. if not dataset:
  159. return None
  160. if dataset and dataset.available_document_count == 0 and dataset.available_document_count == 0:
  161. return None
  162. top_k = dataset_configs.get("top_k", 2)
  163. # dynamically adjust top_k when the remaining token number is not enough to support top_k
  164. top_k = self._dynamic_calc_retrieve_k(dataset=dataset, top_k=top_k, rest_tokens=rest_tokens)
  165. score_threshold = None
  166. score_threshold_config = dataset_configs.get("score_threshold")
  167. if score_threshold_config and score_threshold_config.get("enable"):
  168. score_threshold = score_threshold_config.get("value")
  169. tool = DatasetRetrieverTool.from_dataset(
  170. dataset=dataset,
  171. top_k=top_k,
  172. score_threshold=score_threshold,
  173. callbacks=[DatasetToolCallbackHandler(conversation_message_task)],
  174. conversation_message_task=conversation_message_task,
  175. return_resource=return_resource,
  176. retriever_from=retriever_from
  177. )
  178. return tool
  179. def to_web_reader_tool(self, tool_config: dict, agent_model_instance: BaseLLM, **kwargs) -> Optional[BaseTool]:
  180. """
  181. A tool for reading web pages
  182. :return:
  183. """
  184. try:
  185. summary_model_instance = ModelFactory.get_text_generation_model(
  186. tenant_id=self.tenant_id,
  187. model_provider_name=agent_model_instance.model_provider.provider_name,
  188. model_name=agent_model_instance.name,
  189. model_kwargs=ModelKwargs(
  190. temperature=0,
  191. max_tokens=500
  192. ),
  193. deduct_quota=False
  194. )
  195. except ProviderTokenNotInitError:
  196. summary_model_instance = None
  197. tool = WebReaderTool(
  198. model_instance=summary_model_instance if summary_model_instance else None,
  199. max_chunk_length=4000,
  200. continue_reading=True
  201. )
  202. return tool
  203. def to_google_search_tool(self, tool_config: dict, **kwargs) -> Optional[BaseTool]:
  204. tool_provider = SerpAPIToolProvider(tenant_id=self.tenant_id)
  205. func_kwargs = tool_provider.credentials_to_func_kwargs()
  206. if not func_kwargs:
  207. return None
  208. tool = Tool(
  209. name="google_search",
  210. description="A tool for performing a Google search and extracting snippets and webpages "
  211. "when you need to search for something you don't know or when your information "
  212. "is not up to date. "
  213. "Input should be a search query.",
  214. func=OptimizedSerpAPIWrapper(**func_kwargs).run,
  215. args_schema=OptimizedSerpAPIInput
  216. )
  217. return tool
  218. def to_current_datetime_tool(self, tool_config: dict, **kwargs) -> Optional[BaseTool]:
  219. tool = DatetimeTool()
  220. return tool
  221. def to_wikipedia_tool(self, tool_config: dict, **kwargs) -> Optional[BaseTool]:
  222. class WikipediaInput(BaseModel):
  223. query: str = Field(..., description="search query.")
  224. return WikipediaQueryRun(
  225. name="wikipedia",
  226. api_wrapper=WikipediaAPIWrapper(doc_content_chars_max=4000),
  227. args_schema=WikipediaInput
  228. )
  229. @classmethod
  230. def _dynamic_calc_retrieve_k(cls, dataset: Dataset, top_k: int, rest_tokens: int) -> int:
  231. if rest_tokens == -1:
  232. return top_k
  233. processing_rule = dataset.latest_process_rule
  234. if not processing_rule:
  235. return top_k
  236. if processing_rule.mode == "custom":
  237. rules = processing_rule.rules_dict
  238. if not rules:
  239. return top_k
  240. segmentation = rules["segmentation"]
  241. segment_max_tokens = segmentation["max_tokens"]
  242. else:
  243. segment_max_tokens = DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens']
  244. # when rest_tokens is less than default context tokens
  245. if rest_tokens < segment_max_tokens * top_k:
  246. return rest_tokens // segment_max_tokens
  247. return min(top_k, 10)