advanced_prompt_transform.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274
  1. from collections.abc import Sequence
  2. from typing import Optional
  3. from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
  4. from core.file import file_manager
  5. from core.file.models import File
  6. from core.helper.code_executor.jinja2.jinja2_formatter import Jinja2Formatter
  7. from core.memory.token_buffer_memory import TokenBufferMemory
  8. from core.model_runtime.entities import (
  9. AssistantPromptMessage,
  10. PromptMessage,
  11. PromptMessageContent,
  12. PromptMessageRole,
  13. SystemPromptMessage,
  14. TextPromptMessageContent,
  15. UserPromptMessage,
  16. )
  17. from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate, MemoryConfig
  18. from core.prompt.prompt_transform import PromptTransform
  19. from core.prompt.utils.prompt_template_parser import PromptTemplateParser
  20. from core.workflow.entities.variable_pool import VariablePool
  21. class AdvancedPromptTransform(PromptTransform):
  22. """
  23. Advanced Prompt Transform for Workflow LLM Node.
  24. """
  25. def __init__(self, with_variable_tmpl: bool = False) -> None:
  26. self.with_variable_tmpl = with_variable_tmpl
  27. def get_prompt(
  28. self,
  29. *,
  30. prompt_template: Sequence[ChatModelMessage] | CompletionModelPromptTemplate,
  31. inputs: dict[str, str],
  32. query: str,
  33. files: Sequence[File],
  34. context: Optional[str],
  35. memory_config: Optional[MemoryConfig],
  36. memory: Optional[TokenBufferMemory],
  37. model_config: ModelConfigWithCredentialsEntity,
  38. ) -> list[PromptMessage]:
  39. prompt_messages = []
  40. if isinstance(prompt_template, CompletionModelPromptTemplate):
  41. prompt_messages = self._get_completion_model_prompt_messages(
  42. prompt_template=prompt_template,
  43. inputs=inputs,
  44. query=query,
  45. files=files,
  46. context=context,
  47. memory_config=memory_config,
  48. memory=memory,
  49. model_config=model_config,
  50. )
  51. elif isinstance(prompt_template, list) and all(isinstance(item, ChatModelMessage) for item in prompt_template):
  52. prompt_messages = self._get_chat_model_prompt_messages(
  53. prompt_template=prompt_template,
  54. inputs=inputs,
  55. query=query,
  56. files=files,
  57. context=context,
  58. memory_config=memory_config,
  59. memory=memory,
  60. model_config=model_config,
  61. )
  62. return prompt_messages
  63. def _get_completion_model_prompt_messages(
  64. self,
  65. prompt_template: CompletionModelPromptTemplate,
  66. inputs: dict,
  67. query: Optional[str],
  68. files: Sequence[File],
  69. context: Optional[str],
  70. memory_config: Optional[MemoryConfig],
  71. memory: Optional[TokenBufferMemory],
  72. model_config: ModelConfigWithCredentialsEntity,
  73. ) -> list[PromptMessage]:
  74. """
  75. Get completion model prompt messages.
  76. """
  77. raw_prompt = prompt_template.text
  78. prompt_messages = []
  79. if prompt_template.edition_type == "basic" or not prompt_template.edition_type:
  80. parser = PromptTemplateParser(template=raw_prompt, with_variable_tmpl=self.with_variable_tmpl)
  81. prompt_inputs = {k: inputs[k] for k in parser.variable_keys if k in inputs}
  82. prompt_inputs = self._set_context_variable(context, parser, prompt_inputs)
  83. if memory and memory_config:
  84. role_prefix = memory_config.role_prefix
  85. prompt_inputs = self._set_histories_variable(
  86. memory=memory,
  87. memory_config=memory_config,
  88. raw_prompt=raw_prompt,
  89. role_prefix=role_prefix,
  90. parser=parser,
  91. prompt_inputs=prompt_inputs,
  92. model_config=model_config,
  93. )
  94. if query:
  95. prompt_inputs = self._set_query_variable(query, parser, prompt_inputs)
  96. prompt = parser.format(prompt_inputs)
  97. else:
  98. prompt = raw_prompt
  99. prompt_inputs = inputs
  100. prompt = Jinja2Formatter.format(prompt, prompt_inputs)
  101. if files:
  102. prompt_message_contents: list[PromptMessageContent] = []
  103. prompt_message_contents.append(TextPromptMessageContent(data=prompt))
  104. for file in files:
  105. prompt_message_contents.append(file_manager.to_prompt_message_content(file))
  106. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  107. else:
  108. prompt_messages.append(UserPromptMessage(content=prompt))
  109. return prompt_messages
  110. def _get_chat_model_prompt_messages(
  111. self,
  112. prompt_template: list[ChatModelMessage],
  113. inputs: dict,
  114. query: Optional[str],
  115. files: Sequence[File],
  116. context: Optional[str],
  117. memory_config: Optional[MemoryConfig],
  118. memory: Optional[TokenBufferMemory],
  119. model_config: ModelConfigWithCredentialsEntity,
  120. ) -> list[PromptMessage]:
  121. """
  122. Get chat model prompt messages.
  123. """
  124. prompt_messages = []
  125. for prompt_item in prompt_template:
  126. raw_prompt = prompt_item.text
  127. if prompt_item.edition_type == "basic" or not prompt_item.edition_type:
  128. if self.with_variable_tmpl:
  129. vp = VariablePool()
  130. for k, v in inputs.items():
  131. if k.startswith("#"):
  132. vp.add(k[1:-1].split("."), v)
  133. raw_prompt = raw_prompt.replace("{{#context#}}", context or "")
  134. prompt = vp.convert_template(raw_prompt).text
  135. else:
  136. parser = PromptTemplateParser(template=raw_prompt, with_variable_tmpl=self.with_variable_tmpl)
  137. prompt_inputs = {k: inputs[k] for k in parser.variable_keys if k in inputs}
  138. prompt_inputs = self._set_context_variable(
  139. context=context, parser=parser, prompt_inputs=prompt_inputs
  140. )
  141. prompt = parser.format(prompt_inputs)
  142. elif prompt_item.edition_type == "jinja2":
  143. prompt = raw_prompt
  144. prompt_inputs = inputs
  145. prompt = Jinja2Formatter.format(template=prompt, inputs=prompt_inputs)
  146. else:
  147. raise ValueError(f"Invalid edition type: {prompt_item.edition_type}")
  148. if prompt_item.role == PromptMessageRole.USER:
  149. prompt_messages.append(UserPromptMessage(content=prompt))
  150. elif prompt_item.role == PromptMessageRole.SYSTEM and prompt:
  151. prompt_messages.append(SystemPromptMessage(content=prompt))
  152. elif prompt_item.role == PromptMessageRole.ASSISTANT:
  153. prompt_messages.append(AssistantPromptMessage(content=prompt))
  154. if query and memory_config and memory_config.query_prompt_template:
  155. parser = PromptTemplateParser(
  156. template=memory_config.query_prompt_template, with_variable_tmpl=self.with_variable_tmpl
  157. )
  158. prompt_inputs = {k: inputs[k] for k in parser.variable_keys if k in inputs}
  159. prompt_inputs["#sys.query#"] = query
  160. prompt_inputs = self._set_context_variable(context, parser, prompt_inputs)
  161. query = parser.format(prompt_inputs)
  162. if memory and memory_config:
  163. prompt_messages = self._append_chat_histories(memory, memory_config, prompt_messages, model_config)
  164. if files and query is not None:
  165. prompt_message_contents: list[PromptMessageContent] = []
  166. prompt_message_contents.append(TextPromptMessageContent(data=query))
  167. for file in files:
  168. prompt_message_contents.append(file_manager.to_prompt_message_content(file))
  169. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  170. else:
  171. prompt_messages.append(UserPromptMessage(content=query))
  172. elif files:
  173. if not query:
  174. # get last message
  175. last_message = prompt_messages[-1] if prompt_messages else None
  176. if last_message and last_message.role == PromptMessageRole.USER:
  177. # get last user message content and add files
  178. prompt_message_contents = [TextPromptMessageContent(data=last_message.content)]
  179. for file in files:
  180. prompt_message_contents.append(file_manager.to_prompt_message_content(file))
  181. last_message.content = prompt_message_contents
  182. else:
  183. prompt_message_contents = [TextPromptMessageContent(data="")] # not for query
  184. for file in files:
  185. prompt_message_contents.append(file_manager.to_prompt_message_content(file))
  186. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  187. else:
  188. prompt_message_contents = [TextPromptMessageContent(data=query)]
  189. for file in files:
  190. prompt_message_contents.append(file_manager.to_prompt_message_content(file))
  191. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  192. elif query:
  193. prompt_messages.append(UserPromptMessage(content=query))
  194. return prompt_messages
  195. def _set_context_variable(self, context: str | None, parser: PromptTemplateParser, prompt_inputs: dict) -> dict:
  196. if "#context#" in parser.variable_keys:
  197. if context:
  198. prompt_inputs["#context#"] = context
  199. else:
  200. prompt_inputs["#context#"] = ""
  201. return prompt_inputs
  202. def _set_query_variable(self, query: str, parser: PromptTemplateParser, prompt_inputs: dict) -> dict:
  203. if "#query#" in parser.variable_keys:
  204. if query:
  205. prompt_inputs["#query#"] = query
  206. else:
  207. prompt_inputs["#query#"] = ""
  208. return prompt_inputs
  209. def _set_histories_variable(
  210. self,
  211. memory: TokenBufferMemory,
  212. memory_config: MemoryConfig,
  213. raw_prompt: str,
  214. role_prefix: MemoryConfig.RolePrefix,
  215. parser: PromptTemplateParser,
  216. prompt_inputs: dict,
  217. model_config: ModelConfigWithCredentialsEntity,
  218. ) -> dict:
  219. if "#histories#" in parser.variable_keys:
  220. if memory:
  221. inputs = {"#histories#": "", **prompt_inputs}
  222. parser = PromptTemplateParser(template=raw_prompt, with_variable_tmpl=self.with_variable_tmpl)
  223. prompt_inputs = {k: inputs[k] for k in parser.variable_keys if k in inputs}
  224. tmp_human_message = UserPromptMessage(content=parser.format(prompt_inputs))
  225. rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
  226. histories = self._get_history_messages_from_memory(
  227. memory=memory,
  228. memory_config=memory_config,
  229. max_token_limit=rest_tokens,
  230. human_prefix=role_prefix.user,
  231. ai_prefix=role_prefix.assistant,
  232. )
  233. prompt_inputs["#histories#"] = histories
  234. else:
  235. prompt_inputs["#histories#"] = ""
  236. return prompt_inputs