Jyong 0f90e6df75 add pgvector full text search settting (#7427) 8 сар өмнө
..
configs 3d27d15f00 chore(*): Bump version 0.7.1 (#7389) 8 сар өмнө
constants 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 сар өмнө
contexts 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 сар өмнө
controllers 0f90e6df75 add pgvector full text search settting (#7427) 8 сар өмнө
core 53146ad685 feat: support line break of tooltip content (#7424) 8 сар өмнө
docker f656e1bae2 fix: ensure db migration in docker entry script running with `upgrade-db` command for proper locking (#6946) 8 сар өмнө
events fbf31b5d52 feat: custom app icon (#7196) 8 сар өмнө
extensions 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 сар өмнө
fields fbf31b5d52 feat: custom app icon (#7196) 8 сар өмнө
libs fbf31b5d52 feat: custom app icon (#7196) 8 сар өмнө
migrations fbf31b5d52 feat: custom app icon (#7196) 8 сар өмнө
models bbb6fcc4f0 chore: update ruff from 0.5.x to 0.6.x (#7384) 8 сар өмнө
schedule 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 сар өмнө
services fbf31b5d52 feat: custom app icon (#7196) 8 сар өмнө
tasks dbc1ae45de chore: update docstrings (#7343) 8 сар өмнө
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 10 сар өмнө
tests 0223fc6fd5 feat: add pgvector full_text_search (#7396) 8 сар өмнө
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 сар өмнө
.env.example c7df6783df Revert "feat: support pinning, including, and excluding for Model Providers and Tools" (#7324) 8 сар өмнө
Dockerfile 169cde6c3c add nltk punkt resource (#7063) 8 сар өмнө
README.md fb5e3662d5 Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) 9 сар өмнө
app.py 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 сар өмнө
commands.py 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 сар өмнө
poetry.lock 68dc6d5bc3 chore: rearrange api python dependencies (#7391) 8 сар өмнө
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 сар өмнө
pyproject.toml 68dc6d5bc3 chore: rearrange api python dependencies (#7391) 8 сар өмнө

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
    secret_key=$(openssl rand -base64 42)
    sed -i '' "/^SECRET_KEY=/c\\
    SECRET_KEY=${secret_key}" .env
    
  3. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies

    poetry env use 3.10
    poetry install
    

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  2. Start Dify web service.

  3. Setup your application by visiting http://localhost:3000...

  4. If you need to debug local async processing, please start the worker service.

    poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion
    

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh