123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- import os
- from collections.abc import Generator
- import pytest
- from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
- from core.model_runtime.entities.message_entities import (
- AssistantPromptMessage,
- PromptMessageTool,
- SystemPromptMessage,
- UserPromptMessage,
- )
- from core.model_runtime.entities.model_entities import AIModelEntity
- from core.model_runtime.errors.validate import CredentialsValidateFailedError
- from core.model_runtime.model_providers.gitee_ai.llm.llm import GiteeAILargeLanguageModel
- def test_predefined_models():
- model = GiteeAILargeLanguageModel()
- model_schemas = model.predefined_models()
- assert len(model_schemas) >= 1
- assert isinstance(model_schemas[0], AIModelEntity)
- def test_validate_credentials_for_chat_model():
- model = GiteeAILargeLanguageModel()
- with pytest.raises(CredentialsValidateFailedError):
- # model name to gpt-3.5-turbo because of mocking
- model.validate_credentials(model="gpt-3.5-turbo", credentials={"api_key": "invalid_key"})
- model.validate_credentials(
- model="Qwen2-7B-Instruct",
- credentials={"api_key": os.environ.get("GITEE_AI_API_KEY")},
- )
- def test_invoke_chat_model():
- model = GiteeAILargeLanguageModel()
- result = model.invoke(
- model="Qwen2-7B-Instruct",
- credentials={"api_key": os.environ.get("GITEE_AI_API_KEY")},
- prompt_messages=[
- SystemPromptMessage(
- content="You are a helpful AI assistant.",
- ),
- UserPromptMessage(content="Hello World!"),
- ],
- model_parameters={
- "temperature": 0.0,
- "top_p": 1.0,
- "presence_penalty": 0.0,
- "frequency_penalty": 0.0,
- "max_tokens": 10,
- "stream": False,
- },
- stop=["How"],
- stream=False,
- user="foo",
- )
- assert isinstance(result, LLMResult)
- assert len(result.message.content) > 0
- def test_invoke_stream_chat_model():
- model = GiteeAILargeLanguageModel()
- result = model.invoke(
- model="Qwen2-7B-Instruct",
- credentials={"api_key": os.environ.get("GITEE_AI_API_KEY")},
- prompt_messages=[
- SystemPromptMessage(
- content="You are a helpful AI assistant.",
- ),
- UserPromptMessage(content="Hello World!"),
- ],
- model_parameters={"temperature": 0.0, "max_tokens": 100, "stream": False},
- stream=True,
- user="foo",
- )
- assert isinstance(result, Generator)
- for chunk in result:
- assert isinstance(chunk, LLMResultChunk)
- assert isinstance(chunk.delta, LLMResultChunkDelta)
- assert isinstance(chunk.delta.message, AssistantPromptMessage)
- assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
- if chunk.delta.finish_reason is not None:
- assert chunk.delta.usage is not None
- def test_get_num_tokens():
- model = GiteeAILargeLanguageModel()
- num_tokens = model.get_num_tokens(
- model="Qwen2-7B-Instruct",
- credentials={"api_key": os.environ.get("GITEE_AI_API_KEY")},
- prompt_messages=[UserPromptMessage(content="Hello World!")],
- )
- assert num_tokens == 10
- num_tokens = model.get_num_tokens(
- model="Qwen2-7B-Instruct",
- credentials={"api_key": os.environ.get("GITEE_AI_API_KEY")},
- prompt_messages=[
- SystemPromptMessage(
- content="You are a helpful AI assistant.",
- ),
- UserPromptMessage(content="Hello World!"),
- ],
- tools=[
- PromptMessageTool(
- name="get_weather",
- description="Determine weather in my location",
- parameters={
- "type": "object",
- "properties": {
- "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
- "unit": {"type": "string", "enum": ["c", "f"]},
- },
- "required": ["location"],
- },
- ),
- ],
- )
- assert num_tokens == 77
|