test_llm.py 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132
  1. import os
  2. from collections.abc import Generator
  3. import pytest
  4. from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
  5. from core.model_runtime.entities.message_entities import (
  6. AssistantPromptMessage,
  7. PromptMessageTool,
  8. SystemPromptMessage,
  9. UserPromptMessage,
  10. )
  11. from core.model_runtime.entities.model_entities import AIModelEntity
  12. from core.model_runtime.errors.validate import CredentialsValidateFailedError
  13. from core.model_runtime.model_providers.gitee_ai.llm.llm import GiteeAILargeLanguageModel
  14. def test_predefined_models():
  15. model = GiteeAILargeLanguageModel()
  16. model_schemas = model.predefined_models()
  17. assert len(model_schemas) >= 1
  18. assert isinstance(model_schemas[0], AIModelEntity)
  19. def test_validate_credentials_for_chat_model():
  20. model = GiteeAILargeLanguageModel()
  21. with pytest.raises(CredentialsValidateFailedError):
  22. # model name to gpt-3.5-turbo because of mocking
  23. model.validate_credentials(model="gpt-3.5-turbo", credentials={"api_key": "invalid_key"})
  24. model.validate_credentials(
  25. model="Qwen2-7B-Instruct",
  26. credentials={"api_key": os.environ.get("GITEE_AI_API_KEY")},
  27. )
  28. def test_invoke_chat_model():
  29. model = GiteeAILargeLanguageModel()
  30. result = model.invoke(
  31. model="Qwen2-7B-Instruct",
  32. credentials={"api_key": os.environ.get("GITEE_AI_API_KEY")},
  33. prompt_messages=[
  34. SystemPromptMessage(
  35. content="You are a helpful AI assistant.",
  36. ),
  37. UserPromptMessage(content="Hello World!"),
  38. ],
  39. model_parameters={
  40. "temperature": 0.0,
  41. "top_p": 1.0,
  42. "presence_penalty": 0.0,
  43. "frequency_penalty": 0.0,
  44. "max_tokens": 10,
  45. "stream": False,
  46. },
  47. stop=["How"],
  48. stream=False,
  49. user="foo",
  50. )
  51. assert isinstance(result, LLMResult)
  52. assert len(result.message.content) > 0
  53. def test_invoke_stream_chat_model():
  54. model = GiteeAILargeLanguageModel()
  55. result = model.invoke(
  56. model="Qwen2-7B-Instruct",
  57. credentials={"api_key": os.environ.get("GITEE_AI_API_KEY")},
  58. prompt_messages=[
  59. SystemPromptMessage(
  60. content="You are a helpful AI assistant.",
  61. ),
  62. UserPromptMessage(content="Hello World!"),
  63. ],
  64. model_parameters={"temperature": 0.0, "max_tokens": 100, "stream": False},
  65. stream=True,
  66. user="foo",
  67. )
  68. assert isinstance(result, Generator)
  69. for chunk in result:
  70. assert isinstance(chunk, LLMResultChunk)
  71. assert isinstance(chunk.delta, LLMResultChunkDelta)
  72. assert isinstance(chunk.delta.message, AssistantPromptMessage)
  73. assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
  74. if chunk.delta.finish_reason is not None:
  75. assert chunk.delta.usage is not None
  76. def test_get_num_tokens():
  77. model = GiteeAILargeLanguageModel()
  78. num_tokens = model.get_num_tokens(
  79. model="Qwen2-7B-Instruct",
  80. credentials={"api_key": os.environ.get("GITEE_AI_API_KEY")},
  81. prompt_messages=[UserPromptMessage(content="Hello World!")],
  82. )
  83. assert num_tokens == 10
  84. num_tokens = model.get_num_tokens(
  85. model="Qwen2-7B-Instruct",
  86. credentials={"api_key": os.environ.get("GITEE_AI_API_KEY")},
  87. prompt_messages=[
  88. SystemPromptMessage(
  89. content="You are a helpful AI assistant.",
  90. ),
  91. UserPromptMessage(content="Hello World!"),
  92. ],
  93. tools=[
  94. PromptMessageTool(
  95. name="get_weather",
  96. description="Determine weather in my location",
  97. parameters={
  98. "type": "object",
  99. "properties": {
  100. "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
  101. "unit": {"type": "string", "enum": ["c", "f"]},
  102. },
  103. "required": ["location"],
  104. },
  105. ),
  106. ],
  107. )
  108. assert num_tokens == 77