| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231 | 
							- import threading
 
- from typing import Optional
 
- from flask import Flask, current_app
 
- from core.rag.data_post_processor.data_post_processor import DataPostProcessor
 
- from core.rag.datasource.keyword.keyword_factory import Keyword
 
- from core.rag.datasource.vdb.vector_factory import Vector
 
- from core.rag.rerank.rerank_type import RerankMode
 
- from core.rag.retrieval.retrieval_methods import RetrievalMethod
 
- from extensions.ext_database import db
 
- from models.dataset import Dataset
 
- from services.external_knowledge_service import ExternalDatasetService
 
- default_retrieval_model = {
 
-     "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
 
-     "reranking_enable": False,
 
-     "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
 
-     "top_k": 2,
 
-     "score_threshold_enabled": False,
 
- }
 
- class RetrievalService:
 
-     @classmethod
 
-     def retrieve(
 
-         cls,
 
-         retrieval_method: str,
 
-         dataset_id: str,
 
-         query: str,
 
-         top_k: int,
 
-         score_threshold: Optional[float] = 0.0,
 
-         reranking_model: Optional[dict] = None,
 
-         reranking_mode: Optional[str] = "reranking_model",
 
-         weights: Optional[dict] = None,
 
-     ):
 
-         dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 
-         if not dataset:
 
-             return []
 
-         if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
 
-             return []
 
-         all_documents = []
 
-         threads = []
 
-         exceptions = []
 
-         # retrieval_model source with keyword
 
-         if retrieval_method == "keyword_search":
 
-             keyword_thread = threading.Thread(
 
-                 target=RetrievalService.keyword_search,
 
-                 kwargs={
 
-                     "flask_app": current_app._get_current_object(),
 
-                     "dataset_id": dataset_id,
 
-                     "query": query,
 
-                     "top_k": top_k,
 
-                     "all_documents": all_documents,
 
-                     "exceptions": exceptions,
 
-                 },
 
-             )
 
-             threads.append(keyword_thread)
 
-             keyword_thread.start()
 
-         # retrieval_model source with semantic
 
-         if RetrievalMethod.is_support_semantic_search(retrieval_method):
 
-             embedding_thread = threading.Thread(
 
-                 target=RetrievalService.embedding_search,
 
-                 kwargs={
 
-                     "flask_app": current_app._get_current_object(),
 
-                     "dataset_id": dataset_id,
 
-                     "query": query,
 
-                     "top_k": top_k,
 
-                     "score_threshold": score_threshold,
 
-                     "reranking_model": reranking_model,
 
-                     "all_documents": all_documents,
 
-                     "retrieval_method": retrieval_method,
 
-                     "exceptions": exceptions,
 
-                 },
 
-             )
 
-             threads.append(embedding_thread)
 
-             embedding_thread.start()
 
-         # retrieval source with full text
 
-         if RetrievalMethod.is_support_fulltext_search(retrieval_method):
 
-             full_text_index_thread = threading.Thread(
 
-                 target=RetrievalService.full_text_index_search,
 
-                 kwargs={
 
-                     "flask_app": current_app._get_current_object(),
 
-                     "dataset_id": dataset_id,
 
-                     "query": query,
 
-                     "retrieval_method": retrieval_method,
 
-                     "score_threshold": score_threshold,
 
-                     "top_k": top_k,
 
-                     "reranking_model": reranking_model,
 
-                     "all_documents": all_documents,
 
-                     "exceptions": exceptions,
 
-                 },
 
-             )
 
-             threads.append(full_text_index_thread)
 
-             full_text_index_thread.start()
 
-         for thread in threads:
 
-             thread.join()
 
-         if exceptions:
 
-             exception_message = ";\n".join(exceptions)
 
-             raise Exception(exception_message)
 
-         if retrieval_method == RetrievalMethod.HYBRID_SEARCH.value:
 
-             data_post_processor = DataPostProcessor(
 
-                 str(dataset.tenant_id), reranking_mode, reranking_model, weights, False
 
-             )
 
-             all_documents = data_post_processor.invoke(
 
-                 query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
 
-             )
 
-         return all_documents
 
-     @classmethod
 
-     def external_retrieve(cls, dataset_id: str, query: str, external_retrieval_model: Optional[dict] = None):
 
-         dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 
-         if not dataset:
 
-             return []
 
-         all_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
 
-             dataset.tenant_id, dataset_id, query, external_retrieval_model
 
-         )
 
-         return all_documents
 
-     @classmethod
 
-     def keyword_search(
 
-         cls, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list, exceptions: list
 
-     ):
 
-         with flask_app.app_context():
 
-             try:
 
-                 dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 
-                 keyword = Keyword(dataset=dataset)
 
-                 documents = keyword.search(cls.escape_query_for_search(query), top_k=top_k)
 
-                 all_documents.extend(documents)
 
-             except Exception as e:
 
-                 exceptions.append(str(e))
 
-     @classmethod
 
-     def embedding_search(
 
-         cls,
 
-         flask_app: Flask,
 
-         dataset_id: str,
 
-         query: str,
 
-         top_k: int,
 
-         score_threshold: Optional[float],
 
-         reranking_model: Optional[dict],
 
-         all_documents: list,
 
-         retrieval_method: str,
 
-         exceptions: list,
 
-     ):
 
-         with flask_app.app_context():
 
-             try:
 
-                 dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 
-                 vector = Vector(dataset=dataset)
 
-                 documents = vector.search_by_vector(
 
-                     cls.escape_query_for_search(query),
 
-                     search_type="similarity_score_threshold",
 
-                     top_k=top_k,
 
-                     score_threshold=score_threshold,
 
-                     filter={"group_id": [dataset.id]},
 
-                 )
 
-                 if documents:
 
-                     if (
 
-                         reranking_model
 
-                         and reranking_model.get("reranking_model_name")
 
-                         and reranking_model.get("reranking_provider_name")
 
-                         and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH.value
 
-                     ):
 
-                         data_post_processor = DataPostProcessor(
 
-                             str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
 
-                         )
 
-                         all_documents.extend(
 
-                             data_post_processor.invoke(
 
-                                 query=query, documents=documents, score_threshold=score_threshold, top_n=len(documents)
 
-                             )
 
-                         )
 
-                     else:
 
-                         all_documents.extend(documents)
 
-             except Exception as e:
 
-                 exceptions.append(str(e))
 
-     @classmethod
 
-     def full_text_index_search(
 
-         cls,
 
-         flask_app: Flask,
 
-         dataset_id: str,
 
-         query: str,
 
-         top_k: int,
 
-         score_threshold: Optional[float],
 
-         reranking_model: Optional[dict],
 
-         all_documents: list,
 
-         retrieval_method: str,
 
-         exceptions: list,
 
-     ):
 
-         with flask_app.app_context():
 
-             try:
 
-                 dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 
-                 vector_processor = Vector(
 
-                     dataset=dataset,
 
-                 )
 
-                 documents = vector_processor.search_by_full_text(cls.escape_query_for_search(query), top_k=top_k)
 
-                 if documents:
 
-                     if (
 
-                         reranking_model
 
-                         and reranking_model.get("reranking_model_name")
 
-                         and reranking_model.get("reranking_provider_name")
 
-                         and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH.value
 
-                     ):
 
-                         data_post_processor = DataPostProcessor(
 
-                             str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
 
-                         )
 
-                         all_documents.extend(
 
-                             data_post_processor.invoke(
 
-                                 query=query, documents=documents, score_threshold=score_threshold, top_n=len(documents)
 
-                             )
 
-                         )
 
-                     else:
 
-                         all_documents.extend(documents)
 
-             except Exception as e:
 
-                 exceptions.append(str(e))
 
-     @staticmethod
 
-     def escape_query_for_search(query: str) -> str:
 
-         return query.replace('"', '\\"')
 
 
  |