1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- import logging
- import time
- import click
- from celery import shared_task
- from langchain.schema import Document
- from core.index.index import IndexBuilder
- from extensions.ext_database import db
- from models.dataset import DocumentSegment, Dataset
- from models.dataset import Document as DatasetDocument
- @shared_task(queue='dataset')
- def deal_dataset_vector_index_task(dataset_id: str, action: str):
- """
- Async deal dataset from index
- :param dataset_id: dataset_id
- :param action: action
- Usage: deal_dataset_vector_index_task.delay(dataset_id, action)
- """
- logging.info(click.style('Start deal dataset vector index: {}'.format(dataset_id), fg='green'))
- start_at = time.perf_counter()
- try:
- dataset = Dataset.query.filter_by(
- id=dataset_id
- ).first()
- if not dataset:
- raise Exception('Dataset not found')
- if action == "remove":
- index = IndexBuilder.get_index(dataset, 'high_quality', ignore_high_quality_check=True)
- index.delete()
- elif action == "add":
- dataset_documents = db.session.query(DatasetDocument).filter(
- DatasetDocument.dataset_id == dataset_id,
- DatasetDocument.indexing_status == 'completed',
- DatasetDocument.enabled == True,
- DatasetDocument.archived == False,
- ).all()
- if dataset_documents:
- # save vector index
- index = IndexBuilder.get_index(dataset, 'high_quality', ignore_high_quality_check=True)
- documents = []
- for dataset_document in dataset_documents:
- # delete from vector index
- segments = db.session.query(DocumentSegment).filter(
- DocumentSegment.document_id == dataset_document.id,
- DocumentSegment.enabled == True
- ) .order_by(DocumentSegment.position.asc()).all()
- for segment in segments:
- document = Document(
- page_content=segment.content,
- metadata={
- "doc_id": segment.index_node_id,
- "doc_hash": segment.index_node_hash,
- "document_id": segment.document_id,
- "dataset_id": segment.dataset_id,
- }
- )
- documents.append(document)
- # save vector index
- index.add_texts(documents)
- end_at = time.perf_counter()
- logging.info(
- click.style('Deal dataset vector index: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
- except Exception:
- logging.exception("Deal dataset vector index failed")
|