basic_app_runner.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261
  1. import logging
  2. from typing import Optional
  3. from core.app_runner.app_runner import AppRunner
  4. from core.application_queue_manager import ApplicationQueueManager, PublishFrom
  5. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  6. from core.entities.application_entities import ApplicationGenerateEntity, DatasetEntity, InvokeFrom, ModelConfigEntity
  7. from core.features.dataset_retrieval import DatasetRetrievalFeature
  8. from core.memory.token_buffer_memory import TokenBufferMemory
  9. from core.model_manager import ModelInstance
  10. from core.moderation.base import ModerationException
  11. from core.prompt.prompt_transform import AppMode
  12. from extensions.ext_database import db
  13. from models.model import App, Conversation, Message
  14. logger = logging.getLogger(__name__)
  15. class BasicApplicationRunner(AppRunner):
  16. """
  17. Basic Application Runner
  18. """
  19. def run(self, application_generate_entity: ApplicationGenerateEntity,
  20. queue_manager: ApplicationQueueManager,
  21. conversation: Conversation,
  22. message: Message) -> None:
  23. """
  24. Run application
  25. :param application_generate_entity: application generate entity
  26. :param queue_manager: application queue manager
  27. :param conversation: conversation
  28. :param message: message
  29. :return:
  30. """
  31. app_record = db.session.query(App).filter(App.id == application_generate_entity.app_id).first()
  32. if not app_record:
  33. raise ValueError("App not found")
  34. app_orchestration_config = application_generate_entity.app_orchestration_config_entity
  35. inputs = application_generate_entity.inputs
  36. query = application_generate_entity.query
  37. files = application_generate_entity.files
  38. # Pre-calculate the number of tokens of the prompt messages,
  39. # and return the rest number of tokens by model context token size limit and max token size limit.
  40. # If the rest number of tokens is not enough, raise exception.
  41. # Include: prompt template, inputs, query(optional), files(optional)
  42. # Not Include: memory, external data, dataset context
  43. self.get_pre_calculate_rest_tokens(
  44. app_record=app_record,
  45. model_config=app_orchestration_config.model_config,
  46. prompt_template_entity=app_orchestration_config.prompt_template,
  47. inputs=inputs,
  48. files=files,
  49. query=query
  50. )
  51. memory = None
  52. if application_generate_entity.conversation_id:
  53. # get memory of conversation (read-only)
  54. model_instance = ModelInstance(
  55. provider_model_bundle=app_orchestration_config.model_config.provider_model_bundle,
  56. model=app_orchestration_config.model_config.model
  57. )
  58. memory = TokenBufferMemory(
  59. conversation=conversation,
  60. model_instance=model_instance
  61. )
  62. # organize all inputs and template to prompt messages
  63. # Include: prompt template, inputs, query(optional), files(optional)
  64. # memory(optional)
  65. prompt_messages, stop = self.organize_prompt_messages(
  66. app_record=app_record,
  67. model_config=app_orchestration_config.model_config,
  68. prompt_template_entity=app_orchestration_config.prompt_template,
  69. inputs=inputs,
  70. files=files,
  71. query=query,
  72. memory=memory
  73. )
  74. # moderation
  75. try:
  76. # process sensitive_word_avoidance
  77. _, inputs, query = self.moderation_for_inputs(
  78. app_id=app_record.id,
  79. tenant_id=application_generate_entity.tenant_id,
  80. app_orchestration_config_entity=app_orchestration_config,
  81. inputs=inputs,
  82. query=query,
  83. )
  84. except ModerationException as e:
  85. self.direct_output(
  86. queue_manager=queue_manager,
  87. app_orchestration_config=app_orchestration_config,
  88. prompt_messages=prompt_messages,
  89. text=str(e),
  90. stream=application_generate_entity.stream
  91. )
  92. return
  93. if query:
  94. # annotation reply
  95. annotation_reply = self.query_app_annotations_to_reply(
  96. app_record=app_record,
  97. message=message,
  98. query=query,
  99. user_id=application_generate_entity.user_id,
  100. invoke_from=application_generate_entity.invoke_from
  101. )
  102. if annotation_reply:
  103. queue_manager.publish_annotation_reply(
  104. message_annotation_id=annotation_reply.id,
  105. pub_from=PublishFrom.APPLICATION_MANAGER
  106. )
  107. self.direct_output(
  108. queue_manager=queue_manager,
  109. app_orchestration_config=app_orchestration_config,
  110. prompt_messages=prompt_messages,
  111. text=annotation_reply.content,
  112. stream=application_generate_entity.stream
  113. )
  114. return
  115. # fill in variable inputs from external data tools if exists
  116. external_data_tools = app_orchestration_config.external_data_variables
  117. if external_data_tools:
  118. inputs = self.fill_in_inputs_from_external_data_tools(
  119. tenant_id=app_record.tenant_id,
  120. app_id=app_record.id,
  121. external_data_tools=external_data_tools,
  122. inputs=inputs,
  123. query=query
  124. )
  125. # get context from datasets
  126. context = None
  127. if app_orchestration_config.dataset and app_orchestration_config.dataset.dataset_ids:
  128. context = self.retrieve_dataset_context(
  129. tenant_id=app_record.tenant_id,
  130. app_record=app_record,
  131. queue_manager=queue_manager,
  132. model_config=app_orchestration_config.model_config,
  133. show_retrieve_source=app_orchestration_config.show_retrieve_source,
  134. dataset_config=app_orchestration_config.dataset,
  135. message=message,
  136. inputs=inputs,
  137. query=query,
  138. user_id=application_generate_entity.user_id,
  139. invoke_from=application_generate_entity.invoke_from,
  140. memory=memory
  141. )
  142. # reorganize all inputs and template to prompt messages
  143. # Include: prompt template, inputs, query(optional), files(optional)
  144. # memory(optional), external data, dataset context(optional)
  145. prompt_messages, stop = self.organize_prompt_messages(
  146. app_record=app_record,
  147. model_config=app_orchestration_config.model_config,
  148. prompt_template_entity=app_orchestration_config.prompt_template,
  149. inputs=inputs,
  150. files=files,
  151. query=query,
  152. context=context,
  153. memory=memory
  154. )
  155. # check hosting moderation
  156. hosting_moderation_result = self.check_hosting_moderation(
  157. application_generate_entity=application_generate_entity,
  158. queue_manager=queue_manager,
  159. prompt_messages=prompt_messages
  160. )
  161. if hosting_moderation_result:
  162. return
  163. # Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
  164. self.recale_llm_max_tokens(
  165. model_config=app_orchestration_config.model_config,
  166. prompt_messages=prompt_messages
  167. )
  168. # Invoke model
  169. model_instance = ModelInstance(
  170. provider_model_bundle=app_orchestration_config.model_config.provider_model_bundle,
  171. model=app_orchestration_config.model_config.model
  172. )
  173. invoke_result = model_instance.invoke_llm(
  174. prompt_messages=prompt_messages,
  175. model_parameters=app_orchestration_config.model_config.parameters,
  176. stop=stop,
  177. stream=application_generate_entity.stream,
  178. user=application_generate_entity.user_id,
  179. )
  180. # handle invoke result
  181. self._handle_invoke_result(
  182. invoke_result=invoke_result,
  183. queue_manager=queue_manager,
  184. stream=application_generate_entity.stream
  185. )
  186. def retrieve_dataset_context(self, tenant_id: str,
  187. app_record: App,
  188. queue_manager: ApplicationQueueManager,
  189. model_config: ModelConfigEntity,
  190. dataset_config: DatasetEntity,
  191. show_retrieve_source: bool,
  192. message: Message,
  193. inputs: dict,
  194. query: str,
  195. user_id: str,
  196. invoke_from: InvokeFrom,
  197. memory: Optional[TokenBufferMemory] = None) -> Optional[str]:
  198. """
  199. Retrieve dataset context
  200. :param tenant_id: tenant id
  201. :param app_record: app record
  202. :param queue_manager: queue manager
  203. :param model_config: model config
  204. :param dataset_config: dataset config
  205. :param show_retrieve_source: show retrieve source
  206. :param message: message
  207. :param inputs: inputs
  208. :param query: query
  209. :param user_id: user id
  210. :param invoke_from: invoke from
  211. :param memory: memory
  212. :return:
  213. """
  214. hit_callback = DatasetIndexToolCallbackHandler(
  215. queue_manager,
  216. app_record.id,
  217. message.id,
  218. user_id,
  219. invoke_from
  220. )
  221. if (app_record.mode == AppMode.COMPLETION.value and dataset_config
  222. and dataset_config.retrieve_config.query_variable):
  223. query = inputs.get(dataset_config.retrieve_config.query_variable, "")
  224. dataset_retrieval = DatasetRetrievalFeature()
  225. return dataset_retrieval.retrieve(
  226. tenant_id=tenant_id,
  227. model_config=model_config,
  228. config=dataset_config,
  229. query=query,
  230. invoke_from=invoke_from,
  231. show_retrieve_source=show_retrieve_source,
  232. hit_callback=hit_callback,
  233. memory=memory
  234. )