| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 | import datetimeimport loggingimport timeimport clickfrom celery import shared_taskfrom configs import dify_configfrom core.indexing_runner import DocumentIsPausedError, IndexingRunnerfrom core.rag.index_processor.index_processor_factory import IndexProcessorFactoryfrom extensions.ext_database import dbfrom models.dataset import Dataset, Document, DocumentSegmentfrom services.feature_service import FeatureService@shared_task(queue="dataset")def duplicate_document_indexing_task(dataset_id: str, document_ids: list):    """    Async process document    :param dataset_id:    :param document_ids:    Usage: duplicate_document_indexing_task.delay(dataset_id, document_id)    """    documents = []    start_at = time.perf_counter()    dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()        features = FeatureService.get_features(dataset.tenant_id)    try:        if features.billing.enabled:            vector_space = features.vector_space            count = len(document_ids)            batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)            if count > batch_upload_limit:                raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")            if 0 < vector_space.limit <= vector_space.size:                raise ValueError(                    "Your total number of documents plus the number of uploads have over the limit of "                    "your subscription."                )    except Exception as e:        for document_id in document_ids:            document = (                db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()            )            if document:                document.indexing_status = "error"                document.error = str(e)                document.stopped_at = datetime.datetime.utcnow()                db.session.add(document)        db.session.commit()        return    for document_id in document_ids:        logging.info(click.style("Start process document: {}".format(document_id), fg="green"))        document = (            db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()        )        if document:                        index_type = document.doc_form            index_processor = IndexProcessorFactory(index_type).init_index_processor()            segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all()            if segments:                index_node_ids = [segment.index_node_id for segment in segments]                                index_processor.clean(dataset, index_node_ids)                for segment in segments:                    db.session.delete(segment)                db.session.commit()            document.indexing_status = "parsing"            document.processing_started_at = datetime.datetime.utcnow()            documents.append(document)            db.session.add(document)    db.session.commit()    try:        indexing_runner = IndexingRunner()        indexing_runner.run(documents)        end_at = time.perf_counter()        logging.info(click.style("Processed dataset: {} latency: {}".format(dataset_id, end_at - start_at), fg="green"))    except DocumentIsPausedError as ex:        logging.info(click.style(str(ex), fg="yellow"))    except Exception:        pass
 |