import os from langchain.llms import AzureOpenAI from langchain.schema import LLMResult from typing import Optional, List, Dict, Mapping, Any from pydantic import root_validator from core.llm.error_handle_wraps import handle_llm_exceptions, handle_llm_exceptions_async class StreamableAzureOpenAI(AzureOpenAI): openai_api_type: str = "azure" openai_api_version: str = "" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" try: import openai values["client"] = openai.Completion except ImportError: raise ValueError( "Could not import openai python package. " "Please install it with `pip install openai`." ) if values["streaming"] and values["n"] > 1: raise ValueError("Cannot stream results when n > 1.") if values["streaming"] and values["best_of"] > 1: raise ValueError("Cannot stream results when best_of > 1.") return values @property def _invocation_params(self) -> Dict[str, Any]: return {**super()._invocation_params, **{ "api_type": self.openai_api_type, "api_base": self.openai_api_base, "api_version": self.openai_api_version, "api_key": self.openai_api_key, "organization": self.openai_organization if self.openai_organization else None, }} @property def _identifying_params(self) -> Mapping[str, Any]: return {**super()._identifying_params, **{ "api_type": self.openai_api_type, "api_base": self.openai_api_base, "api_version": self.openai_api_version, "api_key": self.openai_api_key, "organization": self.openai_organization if self.openai_organization else None, }} @handle_llm_exceptions def generate( self, prompts: List[str], stop: Optional[List[str]] = None ) -> LLMResult: return super().generate(prompts, stop) @handle_llm_exceptions_async async def agenerate( self, prompts: List[str], stop: Optional[List[str]] = None ) -> LLMResult: return await super().agenerate(prompts, stop)