const translation = { knowledge: 'Knowledge', documentCount: ' docs', wordCount: ' k words', appCount: ' linked apps', createDataset: 'Create Knowledge', createDatasetIntro: 'Import your own text data or write data in real-time via Webhook for LLM context enhancement.', deleteDatasetConfirmTitle: 'Delete this Knowledge?', deleteDatasetConfirmContent: 'Deleting the Knowledge is irreversible. Users will no longer be able to access your Knowledge, and all prompt configurations and logs will be permanently deleted.', datasetUsedByApp: 'The knowledge is being used by some apps. Apps will no longer be able to use this Knowledge, and all prompt configurations and logs will be permanently deleted.', datasetDeleted: 'Knowledge deleted', datasetDeleteFailed: 'Failed to delete Knowledge', didYouKnow: 'Did you know?', intro1: 'The Knowledge can be integrated into the Dify application ', intro2: 'as a context', intro3: ',', intro4: 'or it ', intro5: 'can be created', intro6: ' as a standalone ChatGPT index plug-in to publish', unavailable: 'Unavailable', unavailableTip: 'Embedding model is not available, the default embedding model needs to be configured', datasets: 'KNOWLEDGE', datasetsApi: 'API ACCESS', retrieval: { semantic_search: { title: 'Vector Search', description: 'Generate query embeddings and search for the text chunk most similar to its vector representation.', }, full_text_search: { title: 'Full-Text Search', description: 'Index all terms in the document, allowing users to search any term and retrieve relevant text chunk containing those terms.', }, hybrid_search: { title: 'Hybrid Search', description: 'Execute full-text search and vector searches simultaneously, re-rank to select the best match for the user\'s query. Users can choose to set weights or configure to a Rerank model.', recommend: 'Recommend', }, invertedIndex: { title: 'Inverted Index', description: 'Inverted Index is a structure used for efficient retrieval. Organized by terms, each term points to documents or web pages containing it.', }, change: 'Change', changeRetrievalMethod: 'Change retrieval method', }, docsFailedNotice: 'documents failed to be indexed', retry: 'Retry', indexingTechnique: { high_quality: 'HQ', economy: 'ECO', }, indexingMethod: { semantic_search: 'VECTOR', full_text_search: 'FULL TEXT', hybrid_search: 'HYBRID', invertedIndex: 'INVERTED', }, defaultRetrievalTip: 'Multi-path retrieval is used by default. Knowledge is retrieved from multiple knowledge bases and then re-ranked.', mixtureHighQualityAndEconomicTip: 'The Rerank model is required for mixture of high quality and economical knowledge bases.', inconsistentEmbeddingModelTip: 'The Rerank model is required if the Embedding models of the selected knowledge bases are inconsistent.', retrievalSettings: 'Retrieval Setting', rerankSettings: 'Rerank Setting', weightedScore: { title: 'Weighted Score', description: 'By adjusting the weights assigned, this rerank strategy determines whether to prioritize semantic or keyword matching.', semanticFirst: 'Semantic first', keywordFirst: 'Keyword first', customized: 'Customized', semantic: 'Semantic', keyword: 'Keyword', }, nTo1RetrievalLegacy: 'N-to-1 retrieval will be officially deprecated from September. It is recommended to use the latest Multi-path retrieval to obtain better results. ', nTo1RetrievalLegacyLink: 'Learn more', nTo1RetrievalLegacyLinkText: ' N-to-1 retrieval will be officially deprecated in September.', } export default translation