import datetime
import json
import logging
import re
import threading
import time
import uuid
from typing import Optional, List, cast

from flask import current_app, Flask
from flask_login import current_user
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter

from core.data_loader.file_extractor import FileExtractor
from core.data_loader.loader.notion import NotionLoader
from core.docstore.dataset_docstore import DatesetDocumentStore
from core.generator.llm_generator import LLMGenerator
from core.index.index import IndexBuilder
from core.model_providers.error import ProviderTokenNotInitError
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.entity.message import MessageType
from core.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from extensions.ext_storage import storage
from libs import helper
from models.dataset import Document as DatasetDocument
from models.dataset import Dataset, DocumentSegment, DatasetProcessRule
from models.model import UploadFile
from models.source import DataSourceBinding


class IndexingRunner:

    def __init__(self):
        self.storage = storage

    def run(self, dataset_documents: List[DatasetDocument]):
        """Run the indexing process."""
        for dataset_document in dataset_documents:
            try:
                # get dataset
                dataset = Dataset.query.filter_by(
                    id=dataset_document.dataset_id
                ).first()

                if not dataset:
                    raise ValueError("no dataset found")

                # load file
                text_docs = self._load_data(dataset_document)

                # get the process rule
                processing_rule = db.session.query(DatasetProcessRule). \
                    filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
                    first()

                # get splitter
                splitter = self._get_splitter(processing_rule)

                # split to documents
                documents = self._step_split(
                    text_docs=text_docs,
                    splitter=splitter,
                    dataset=dataset,
                    dataset_document=dataset_document,
                    processing_rule=processing_rule
                )
                self._build_index(
                    dataset=dataset,
                    dataset_document=dataset_document,
                    documents=documents
                )
            except DocumentIsPausedException:
                raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
            except ProviderTokenNotInitError as e:
                dataset_document.indexing_status = 'error'
                dataset_document.error = str(e.description)
                dataset_document.stopped_at = datetime.datetime.utcnow()
                db.session.commit()
            except Exception as e:
                logging.exception("consume document failed")
                dataset_document.indexing_status = 'error'
                dataset_document.error = str(e)
                dataset_document.stopped_at = datetime.datetime.utcnow()
                db.session.commit()

    def format_split_text(self, text):
        regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q|$)"
        matches = re.findall(regex, text, re.MULTILINE)

        result = []
        for match in matches:
            q = match[0]
            a = match[1]
            if q and a:
                result.append({
                    "question": q,
                    "answer": re.sub(r"\n\s*", "\n", a.strip())
                })

        return result

    def run_in_splitting_status(self, dataset_document: DatasetDocument):
        """Run the indexing process when the index_status is splitting."""
        try:
            # get dataset
            dataset = Dataset.query.filter_by(
                id=dataset_document.dataset_id
            ).first()

            if not dataset:
                raise ValueError("no dataset found")

            # get exist document_segment list and delete
            document_segments = DocumentSegment.query.filter_by(
                dataset_id=dataset.id,
                document_id=dataset_document.id
            ).all()

            db.session.delete(document_segments)
            db.session.commit()

            # load file
            text_docs = self._load_data(dataset_document)

            # get the process rule
            processing_rule = db.session.query(DatasetProcessRule). \
                filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
                first()

            # get splitter
            splitter = self._get_splitter(processing_rule)

            # split to documents
            documents = self._step_split(
                text_docs=text_docs,
                splitter=splitter,
                dataset=dataset,
                dataset_document=dataset_document,
                processing_rule=processing_rule
            )

            # build index
            self._build_index(
                dataset=dataset,
                dataset_document=dataset_document,
                documents=documents
            )
        except DocumentIsPausedException:
            raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
        except ProviderTokenNotInitError as e:
            dataset_document.indexing_status = 'error'
            dataset_document.error = str(e.description)
            dataset_document.stopped_at = datetime.datetime.utcnow()
            db.session.commit()
        except Exception as e:
            logging.exception("consume document failed")
            dataset_document.indexing_status = 'error'
            dataset_document.error = str(e)
            dataset_document.stopped_at = datetime.datetime.utcnow()
            db.session.commit()

    def run_in_indexing_status(self, dataset_document: DatasetDocument):
        """Run the indexing process when the index_status is indexing."""
        try:
            # get dataset
            dataset = Dataset.query.filter_by(
                id=dataset_document.dataset_id
            ).first()

            if not dataset:
                raise ValueError("no dataset found")

            # get exist document_segment list and delete
            document_segments = DocumentSegment.query.filter_by(
                dataset_id=dataset.id,
                document_id=dataset_document.id
            ).all()

            documents = []
            if document_segments:
                for document_segment in document_segments:
                    # transform segment to node
                    if document_segment.status != "completed":
                        document = Document(
                            page_content=document_segment.content,
                            metadata={
                                "doc_id": document_segment.index_node_id,
                                "doc_hash": document_segment.index_node_hash,
                                "document_id": document_segment.document_id,
                                "dataset_id": document_segment.dataset_id,
                            }
                        )

                        documents.append(document)

            # build index
            self._build_index(
                dataset=dataset,
                dataset_document=dataset_document,
                documents=documents
            )
        except DocumentIsPausedException:
            raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
        except ProviderTokenNotInitError as e:
            dataset_document.indexing_status = 'error'
            dataset_document.error = str(e.description)
            dataset_document.stopped_at = datetime.datetime.utcnow()
            db.session.commit()
        except Exception as e:
            logging.exception("consume document failed")
            dataset_document.indexing_status = 'error'
            dataset_document.error = str(e)
            dataset_document.stopped_at = datetime.datetime.utcnow()
            db.session.commit()

    def file_indexing_estimate(self, tenant_id: str, file_details: List[UploadFile], tmp_processing_rule: dict,
                               doc_form: str = None, doc_language: str = 'English', dataset_id: str = None) -> dict:
        """
        Estimate the indexing for the document.
        """
        if dataset_id:
            dataset = Dataset.query.filter_by(
                id=dataset_id
            ).first()
            if not dataset:
                raise ValueError('Dataset not found.')
            embedding_model = ModelFactory.get_embedding_model(
                tenant_id=dataset.tenant_id,
                model_provider_name=dataset.embedding_model_provider,
                model_name=dataset.embedding_model
            )
        else:
            embedding_model = ModelFactory.get_embedding_model(
                tenant_id=tenant_id
            )
        tokens = 0
        preview_texts = []
        total_segments = 0
        for file_detail in file_details:
            # load data from file
            text_docs = FileExtractor.load(file_detail)

            processing_rule = DatasetProcessRule(
                mode=tmp_processing_rule["mode"],
                rules=json.dumps(tmp_processing_rule["rules"])
            )

            # get splitter
            splitter = self._get_splitter(processing_rule)

            # split to documents
            documents = self._split_to_documents_for_estimate(
                text_docs=text_docs,
                splitter=splitter,
                processing_rule=processing_rule
            )

            total_segments += len(documents)

            for document in documents:
                if len(preview_texts) < 5:
                    preview_texts.append(document.page_content)

                tokens += embedding_model.get_num_tokens(self.filter_string(document.page_content))

        if doc_form and doc_form == 'qa_model':
            text_generation_model = ModelFactory.get_text_generation_model(
                tenant_id=tenant_id
            )
            if len(preview_texts) > 0:
                # qa model document
                response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0], doc_language)
                document_qa_list = self.format_split_text(response)
                return {
                    "total_segments": total_segments * 20,
                    "tokens": total_segments * 2000,
                    "total_price": '{:f}'.format(
                        text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.HUMAN)),
                    "currency": embedding_model.get_currency(),
                    "qa_preview": document_qa_list,
                    "preview": preview_texts
                }
        return {
            "total_segments": total_segments,
            "tokens": tokens,
            "total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)),
            "currency": embedding_model.get_currency(),
            "preview": preview_texts
        }

    def notion_indexing_estimate(self, tenant_id: str, notion_info_list: list, tmp_processing_rule: dict,
                                 doc_form: str = None, doc_language: str = 'English', dataset_id: str = None) -> dict:
        """
        Estimate the indexing for the document.
        """
        if dataset_id:
            dataset = Dataset.query.filter_by(
                id=dataset_id
            ).first()
            if not dataset:
                raise ValueError('Dataset not found.')
            embedding_model = ModelFactory.get_embedding_model(
                tenant_id=dataset.tenant_id,
                model_provider_name=dataset.embedding_model_provider,
                model_name=dataset.embedding_model
            )
        else:
            embedding_model = ModelFactory.get_embedding_model(
                tenant_id=tenant_id
            )

        # load data from notion
        tokens = 0
        preview_texts = []
        total_segments = 0
        for notion_info in notion_info_list:
            workspace_id = notion_info['workspace_id']
            data_source_binding = DataSourceBinding.query.filter(
                db.and_(
                    DataSourceBinding.tenant_id == current_user.current_tenant_id,
                    DataSourceBinding.provider == 'notion',
                    DataSourceBinding.disabled == False,
                    DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
                )
            ).first()
            if not data_source_binding:
                raise ValueError('Data source binding not found.')

            for page in notion_info['pages']:
                loader = NotionLoader(
                    notion_access_token=data_source_binding.access_token,
                    notion_workspace_id=workspace_id,
                    notion_obj_id=page['page_id'],
                    notion_page_type=page['type']
                )
                documents = loader.load()

                processing_rule = DatasetProcessRule(
                    mode=tmp_processing_rule["mode"],
                    rules=json.dumps(tmp_processing_rule["rules"])
                )

                # get splitter
                splitter = self._get_splitter(processing_rule)

                # split to documents
                documents = self._split_to_documents_for_estimate(
                    text_docs=documents,
                    splitter=splitter,
                    processing_rule=processing_rule
                )
                total_segments += len(documents)
                for document in documents:
                    if len(preview_texts) < 5:
                        preview_texts.append(document.page_content)

                    tokens += embedding_model.get_num_tokens(document.page_content)

        if doc_form and doc_form == 'qa_model':
            text_generation_model = ModelFactory.get_text_generation_model(
                tenant_id=tenant_id
            )
            if len(preview_texts) > 0:
                # qa model document
                response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0], doc_language)
                document_qa_list = self.format_split_text(response)
                return {
                    "total_segments": total_segments * 20,
                    "tokens": total_segments * 2000,
                    "total_price": '{:f}'.format(
                        text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.HUMAN)),
                    "currency": embedding_model.get_currency(),
                    "qa_preview": document_qa_list,
                    "preview": preview_texts
                }
        return {
            "total_segments": total_segments,
            "tokens": tokens,
            "total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)),
            "currency": embedding_model.get_currency(),
            "preview": preview_texts
        }

    def _load_data(self, dataset_document: DatasetDocument) -> List[Document]:
        # load file
        if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
            return []

        data_source_info = dataset_document.data_source_info_dict
        text_docs = []
        if dataset_document.data_source_type == 'upload_file':
            if not data_source_info or 'upload_file_id' not in data_source_info:
                raise ValueError("no upload file found")

            file_detail = db.session.query(UploadFile). \
                filter(UploadFile.id == data_source_info['upload_file_id']). \
                one_or_none()

            text_docs = FileExtractor.load(file_detail)
        elif dataset_document.data_source_type == 'notion_import':
            loader = NotionLoader.from_document(dataset_document)
            text_docs = loader.load()

        # update document status to splitting
        self._update_document_index_status(
            document_id=dataset_document.id,
            after_indexing_status="splitting",
            extra_update_params={
                DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
                DatasetDocument.parsing_completed_at: datetime.datetime.utcnow()
            }
        )

        # replace doc id to document model id
        text_docs = cast(List[Document], text_docs)
        for text_doc in text_docs:
            # remove invalid symbol
            text_doc.page_content = self.filter_string(text_doc.page_content)
            text_doc.metadata['document_id'] = dataset_document.id
            text_doc.metadata['dataset_id'] = dataset_document.dataset_id

        return text_docs

    def filter_string(self, text):
        text = re.sub(r'<\|', '<', text)
        text = re.sub(r'\|>', '>', text)
        text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]', '', text)
        return text

    def _get_splitter(self, processing_rule: DatasetProcessRule) -> TextSplitter:
        """
        Get the NodeParser object according to the processing rule.
        """
        if processing_rule.mode == "custom":
            # The user-defined segmentation rule
            rules = json.loads(processing_rule.rules)
            segmentation = rules["segmentation"]
            if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
                raise ValueError("Custom segment length should be between 50 and 1000.")

            separator = segmentation["separator"]
            if separator:
                separator = separator.replace('\\n', '\n')

            character_splitter = FixedRecursiveCharacterTextSplitter.from_tiktoken_encoder(
                chunk_size=segmentation["max_tokens"],
                chunk_overlap=0,
                fixed_separator=separator,
                separators=["\n\n", "。", ".", " ", ""]
            )
        else:
            # Automatic segmentation
            character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
                chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
                chunk_overlap=0,
                separators=["\n\n", "。", ".", " ", ""]
            )

        return character_splitter

    def _step_split(self, text_docs: List[Document], splitter: TextSplitter,
                    dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
            -> List[Document]:
        """
        Split the text documents into documents and save them to the document segment.
        """
        documents = self._split_to_documents(
            text_docs=text_docs,
            splitter=splitter,
            processing_rule=processing_rule,
            tenant_id=dataset.tenant_id,
            document_form=dataset_document.doc_form,
            document_language=dataset_document.doc_language
        )

        # save node to document segment
        doc_store = DatesetDocumentStore(
            dataset=dataset,
            user_id=dataset_document.created_by,
            document_id=dataset_document.id
        )

        # add document segments
        doc_store.add_documents(documents)

        # update document status to indexing
        cur_time = datetime.datetime.utcnow()
        self._update_document_index_status(
            document_id=dataset_document.id,
            after_indexing_status="indexing",
            extra_update_params={
                DatasetDocument.cleaning_completed_at: cur_time,
                DatasetDocument.splitting_completed_at: cur_time,
            }
        )

        # update segment status to indexing
        self._update_segments_by_document(
            dataset_document_id=dataset_document.id,
            update_params={
                DocumentSegment.status: "indexing",
                DocumentSegment.indexing_at: datetime.datetime.utcnow()
            }
        )

        return documents

    def _split_to_documents(self, text_docs: List[Document], splitter: TextSplitter,
                            processing_rule: DatasetProcessRule, tenant_id: str,
                            document_form: str, document_language: str) -> List[Document]:
        """
        Split the text documents into nodes.
        """
        all_documents = []
        all_qa_documents = []
        for text_doc in text_docs:
            # document clean
            document_text = self._document_clean(text_doc.page_content, processing_rule)
            text_doc.page_content = document_text

            # parse document to nodes
            documents = splitter.split_documents([text_doc])
            split_documents = []
            for document_node in documents:
                doc_id = str(uuid.uuid4())
                hash = helper.generate_text_hash(document_node.page_content)
                document_node.metadata['doc_id'] = doc_id
                document_node.metadata['doc_hash'] = hash

                split_documents.append(document_node)
            all_documents.extend(split_documents)
        # processing qa document
        if document_form == 'qa_model':
            for i in range(0, len(all_documents), 10):
                threads = []
                sub_documents = all_documents[i:i + 10]
                for doc in sub_documents:
                    document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
                        'flask_app': current_app._get_current_object(),
                        'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
                        'document_language': document_language})
                    threads.append(document_format_thread)
                    document_format_thread.start()
                for thread in threads:
                    thread.join()
            return all_qa_documents
        return all_documents

    def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
        format_documents = []
        if document_node.page_content is None or not document_node.page_content.strip():
            return
        with flask_app.app_context():
            try:
                # qa model document
                response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
                document_qa_list = self.format_split_text(response)
                qa_documents = []
                for result in document_qa_list:
                    qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
                    doc_id = str(uuid.uuid4())
                    hash = helper.generate_text_hash(result['question'])
                    qa_document.metadata['answer'] = result['answer']
                    qa_document.metadata['doc_id'] = doc_id
                    qa_document.metadata['doc_hash'] = hash
                    qa_documents.append(qa_document)
                format_documents.extend(qa_documents)
            except Exception as e:
                logging.exception(e)

            all_qa_documents.extend(format_documents)


    def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter,
                                         processing_rule: DatasetProcessRule) -> List[Document]:
        """
        Split the text documents into nodes.
        """
        all_documents = []
        for text_doc in text_docs:
            # document clean
            document_text = self._document_clean(text_doc.page_content, processing_rule)
            text_doc.page_content = document_text

            # parse document to nodes
            documents = splitter.split_documents([text_doc])

            split_documents = []
            for document in documents:
                if document.page_content is None or not document.page_content.strip():
                    continue
                doc_id = str(uuid.uuid4())
                hash = helper.generate_text_hash(document.page_content)

                document.metadata['doc_id'] = doc_id
                document.metadata['doc_hash'] = hash

                split_documents.append(document)

            all_documents.extend(split_documents)

        return all_documents

    def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
        """
        Clean the document text according to the processing rules.
        """
        if processing_rule.mode == "automatic":
            rules = DatasetProcessRule.AUTOMATIC_RULES
        else:
            rules = json.loads(processing_rule.rules) if processing_rule.rules else {}

        if 'pre_processing_rules' in rules:
            pre_processing_rules = rules["pre_processing_rules"]
            for pre_processing_rule in pre_processing_rules:
                if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
                    # Remove extra spaces
                    pattern = r'\n{3,}'
                    text = re.sub(pattern, '\n\n', text)
                    pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
                    text = re.sub(pattern, ' ', text)
                elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
                    # Remove email
                    pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
                    text = re.sub(pattern, '', text)

                    # Remove URL
                    pattern = r'https?://[^\s]+'
                    text = re.sub(pattern, '', text)

        return text

    def format_split_text(self, text):
        regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q|$)"  # 匹配Q和A的正则表达式
        matches = re.findall(regex, text, re.MULTILINE)  # 获取所有匹配到的结果

        result = []  # 存储最终的结果
        for match in matches:
            q = match[0]
            a = match[1]
            if q and a:
                # 如果Q和A都存在,就将其添加到结果中
                result.append({
                    "question": q,
                    "answer": re.sub(r"\n\s*", "\n", a.strip())
                })

        return result

    def _build_index(self, dataset: Dataset, dataset_document: DatasetDocument, documents: List[Document]) -> None:
        """
        Build the index for the document.
        """
        vector_index = IndexBuilder.get_index(dataset, 'high_quality')
        keyword_table_index = IndexBuilder.get_index(dataset, 'economy')

        embedding_model = ModelFactory.get_embedding_model(
            tenant_id=dataset.tenant_id,
            model_provider_name=dataset.embedding_model_provider,
            model_name=dataset.embedding_model
        )

        # chunk nodes by chunk size
        indexing_start_at = time.perf_counter()
        tokens = 0
        chunk_size = 100
        for i in range(0, len(documents), chunk_size):
            # check document is paused
            self._check_document_paused_status(dataset_document.id)
            chunk_documents = documents[i:i + chunk_size]

            tokens += sum(
                embedding_model.get_num_tokens(document.page_content)
                for document in chunk_documents
            )

            # save vector index
            if vector_index:
                vector_index.add_texts(chunk_documents)

            # save keyword index
            keyword_table_index.add_texts(chunk_documents)

            document_ids = [document.metadata['doc_id'] for document in chunk_documents]
            db.session.query(DocumentSegment).filter(
                DocumentSegment.document_id == dataset_document.id,
                DocumentSegment.index_node_id.in_(document_ids),
                DocumentSegment.status == "indexing"
            ).update({
                DocumentSegment.status: "completed",
                DocumentSegment.enabled: True,
                DocumentSegment.completed_at: datetime.datetime.utcnow()
            })

            db.session.commit()

        indexing_end_at = time.perf_counter()

        # update document status to completed
        self._update_document_index_status(
            document_id=dataset_document.id,
            after_indexing_status="completed",
            extra_update_params={
                DatasetDocument.tokens: tokens,
                DatasetDocument.completed_at: datetime.datetime.utcnow(),
                DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
            }
        )

    def _check_document_paused_status(self, document_id: str):
        indexing_cache_key = 'document_{}_is_paused'.format(document_id)
        result = redis_client.get(indexing_cache_key)
        if result:
            raise DocumentIsPausedException()

    def _update_document_index_status(self, document_id: str, after_indexing_status: str,
                                      extra_update_params: Optional[dict] = None) -> None:
        """
        Update the document indexing status.
        """
        count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
        if count > 0:
            raise DocumentIsPausedException()

        update_params = {
            DatasetDocument.indexing_status: after_indexing_status
        }

        if extra_update_params:
            update_params.update(extra_update_params)

        DatasetDocument.query.filter_by(id=document_id).update(update_params)
        db.session.commit()

    def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
        """
        Update the document segment by document id.
        """
        DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
        db.session.commit()

    def batch_add_segments(self, segments: List[DocumentSegment], dataset: Dataset):
        """
        Batch add segments index processing
        """
        documents = []
        for segment in segments:
            document = Document(
                page_content=segment.content,
                metadata={
                    "doc_id": segment.index_node_id,
                    "doc_hash": segment.index_node_hash,
                    "document_id": segment.document_id,
                    "dataset_id": segment.dataset_id,
                }
            )
            documents.append(document)
        # save vector index
        index = IndexBuilder.get_index(dataset, 'high_quality')
        if index:
            index.add_texts(documents, duplicate_check=True)

        # save keyword index
        index = IndexBuilder.get_index(dataset, 'economy')
        if index:
            index.add_texts(documents)


class DocumentIsPausedException(Exception):
    pass