import json
import logging
import sys
from typing import Optional, List
from core.model_runtime.callbacks.base_callback import Callback
from core.model_runtime.entities.llm_entities import LLMResultChunk, LLMResult
from core.model_runtime.entities.message_entities import PromptMessageTool, PromptMessage
from core.model_runtime.model_providers.__base.ai_model import AIModel
logger = logging.getLogger(__name__)
class LoggingCallback(Callback):
def on_before_invoke(self, llm_instance: AIModel, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[List[str]] = None,
stream: bool = True, user: Optional[str] = None) -> None:
"""
Before invoke callback
:param llm_instance: LLM instance
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param tools: tools for tool calling
:param stop: stop words
:param stream: is stream response
:param user: unique user id
"""
self.print_text("\n[on_llm_before_invoke]\n", color='blue')
self.print_text(f"Model: {model}\n", color='blue')
self.print_text(f"Parameters:\n", color='blue')
for key, value in model_parameters.items():
self.print_text(f"\t{key}: {value}\n", color='blue')
if stop:
self.print_text(f"\tstop: {stop}\n", color='blue')
if tools:
self.print_text(f"\tTools:\n", color='blue')
for tool in tools:
self.print_text(f"\t\t{tool.name}\n", color='blue')
self.print_text(f"Stream: {stream}\n", color='blue')
if user:
self.print_text(f"User: {user}\n", color='blue')
self.print_text(f"Prompt messages:\n", color='blue')
for prompt_message in prompt_messages:
if prompt_message.name:
self.print_text(f"\tname: {prompt_message.name}\n", color='blue')
self.print_text(f"\trole: {prompt_message.role.value}\n", color='blue')
self.print_text(f"\tcontent: {prompt_message.content}\n", color='blue')
if stream:
self.print_text("\n[on_llm_new_chunk]")
def on_new_chunk(self, llm_instance: AIModel, chunk: LLMResultChunk, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[List[str]] = None,
stream: bool = True, user: Optional[str] = None):
"""
On new chunk callback
:param llm_instance: LLM instance
:param chunk: chunk
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param tools: tools for tool calling
:param stop: stop words
:param stream: is stream response
:param user: unique user id
"""
sys.stdout.write(chunk.delta.message.content)
sys.stdout.flush()
def on_after_invoke(self, llm_instance: AIModel, result: LLMResult, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[List[str]] = None,
stream: bool = True, user: Optional[str] = None) -> None:
"""
After invoke callback
:param llm_instance: LLM instance
:param result: result
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param tools: tools for tool calling
:param stop: stop words
:param stream: is stream response
:param user: unique user id
"""
self.print_text("\n[on_llm_after_invoke]\n", color='yellow')
self.print_text(f"Content: {result.message.content}\n", color='yellow')
if result.message.tool_calls:
self.print_text(f"Tool calls:\n", color='yellow')
for tool_call in result.message.tool_calls:
self.print_text(f"\t{tool_call.id}\n", color='yellow')
self.print_text(f"\t{tool_call.function.name}\n", color='yellow')
self.print_text(f"\t{json.dumps(tool_call.function.arguments)}\n", color='yellow')
self.print_text(f"Model: {result.model}\n", color='yellow')
self.print_text(f"Usage: {result.usage}\n", color='yellow')
self.print_text(f"System Fingerprint: {result.system_fingerprint}\n", color='yellow')
def on_invoke_error(self, llm_instance: AIModel, ex: Exception, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[List[str]] = None,
stream: bool = True, user: Optional[str] = None) -> None:
"""
Invoke error callback
:param llm_instance: LLM instance
:param ex: exception
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param tools: tools for tool calling
:param stop: stop words
:param stream: is stream response
:param user: unique user id
"""
self.print_text("\n[on_llm_invoke_error]\n", color='red')
logger.exception(ex)