| 
					
				 | 
			
			
				@@ -0,0 +1,344 @@ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import json 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import os 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import re 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import enum 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from typing import List, Optional, Tuple 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from langchain.memory.chat_memory import BaseChatMemory 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from langchain.schema import BaseMessage 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from core.model_providers.models.entity.model_params import ModelMode 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from core.model_providers.models.entity.message import PromptMessage, MessageType, to_prompt_messages 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from core.model_providers.models.llm.base import BaseLLM 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from core.model_providers.models.llm.baichuan_model import BaichuanModel 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from core.model_providers.models.llm.huggingface_hub_model import HuggingfaceHubModel 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from core.model_providers.models.llm.openllm_model import OpenLLMModel 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from core.model_providers.models.llm.xinference_model import XinferenceModel 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from core.prompt.prompt_builder import PromptBuilder 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from core.prompt.prompt_template import PromptTemplateParser 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+class AppMode(enum.Enum): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    COMPLETION = 'completion' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    CHAT = 'chat' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+class PromptTransform: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def get_prompt(self, mode: str, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                   pre_prompt: str, inputs: dict, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                   query: str, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                   context: Optional[str], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                   memory: Optional[BaseChatMemory], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                   model_instance: BaseLLM) -> \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            Tuple[List[PromptMessage], Optional[List[str]]]: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt_rules = self._read_prompt_rules_from_file(self._prompt_file_name(mode, model_instance)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt, stops = self._get_prompt_and_stop(prompt_rules, pre_prompt, inputs, query, context, memory, model_instance) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return [PromptMessage(content=prompt)], stops 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def get_advanced_prompt(self,  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            app_mode: str, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            app_model_config: str,  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            inputs: dict, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            query: str, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            context: Optional[str], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            memory: Optional[BaseChatMemory], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            model_instance: BaseLLM) -> List[PromptMessage]: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+         
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        model_mode = app_model_config.model_dict['mode'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        app_mode_enum = AppMode(app_mode) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        model_mode_enum = ModelMode(model_mode) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt_messages = [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if app_mode_enum == AppMode.CHAT: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if model_mode_enum == ModelMode.COMPLETION: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                prompt_messages = self._get_chat_app_completion_model_prompt_messages(app_model_config, inputs, query, context, memory, model_instance) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            elif model_mode_enum == ModelMode.CHAT: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                prompt_messages =  self._get_chat_app_chat_model_prompt_messages(app_model_config, inputs, query, context, memory, model_instance) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        elif app_mode_enum == AppMode.COMPLETION: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if model_mode_enum == ModelMode.CHAT: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                prompt_messages =  self._get_completion_app_chat_model_prompt_messages(app_model_config, inputs, context) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            elif model_mode_enum == ModelMode.COMPLETION: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                prompt_messages =  self._get_completion_app_completion_model_prompt_messages(app_model_config, inputs, context) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+             
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return prompt_messages 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def _get_history_messages_from_memory(self, memory: BaseChatMemory, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                          max_token_limit: int) -> str: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        """Get memory messages.""" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        memory.max_token_limit = max_token_limit 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        memory_key = memory.memory_variables[0] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        external_context = memory.load_memory_variables({}) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return external_context[memory_key] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def _get_history_messages_list_from_memory(self, memory: BaseChatMemory, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                          max_token_limit: int) -> List[PromptMessage]: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        """Get memory messages.""" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        memory.max_token_limit = max_token_limit 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        memory.return_messages = True 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        memory_key = memory.memory_variables[0] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        external_context = memory.load_memory_variables({}) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        memory.return_messages = False 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return to_prompt_messages(external_context[memory_key]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def _prompt_file_name(self, mode: str, model_instance: BaseLLM) -> str: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # baichuan 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if isinstance(model_instance, BaichuanModel): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            return self._prompt_file_name_for_baichuan(mode) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        baichuan_model_hosted_platforms = (HuggingfaceHubModel, OpenLLMModel, XinferenceModel) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if isinstance(model_instance, baichuan_model_hosted_platforms) and 'baichuan' in model_instance.name.lower(): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            return self._prompt_file_name_for_baichuan(mode) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # common 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if mode == 'completion': 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            return 'common_completion' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            return 'common_chat' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+         
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def _prompt_file_name_for_baichuan(self, mode: str) -> str: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if mode == 'completion': 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            return 'baichuan_completion' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            return 'baichuan_chat' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def _read_prompt_rules_from_file(self, prompt_name: str) -> dict: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Get the absolute path of the subdirectory 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt_path = os.path.join( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            os.path.dirname(os.path.realpath(__file__)), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            'generate_prompts') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        json_file_path = os.path.join(prompt_path, f'{prompt_name}.json') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Open the JSON file and read its content 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        with open(json_file_path, 'r') as json_file: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            return json.load(json_file) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+         
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def _get_prompt_and_stop(self, prompt_rules: dict, pre_prompt: str, inputs: dict, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                             query: str, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                             context: Optional[str], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                             memory: Optional[BaseChatMemory], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                             model_instance: BaseLLM) -> Tuple[str, Optional[list]]: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        context_prompt_content = '' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if context and 'context_prompt' in prompt_rules: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt']) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            context_prompt_content = prompt_template.format( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                {'context': context} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            ) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        pre_prompt_content = '' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if pre_prompt: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            prompt_template = PromptTemplateParser(template=pre_prompt) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            pre_prompt_content = prompt_template.format( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                prompt_inputs 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            ) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt = '' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for order in prompt_rules['system_prompt_orders']: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if order == 'context_prompt': 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                prompt += context_prompt_content 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            elif order == 'pre_prompt': 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                prompt += pre_prompt_content 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        query_prompt = prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{query}}' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if memory and 'histories_prompt' in prompt_rules: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # append chat histories 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            tmp_human_message = PromptBuilder.to_human_message( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                prompt_content=prompt + query_prompt, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                inputs={ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    'query': query 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            ) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            rest_tokens = self._calculate_rest_token(tmp_human_message, model_instance) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            memory.human_prefix = prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            memory.ai_prefix = prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            histories = self._get_history_messages_from_memory(memory, rest_tokens) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            prompt_template = PromptTemplateParser(template=prompt_rules['histories_prompt']) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            histories_prompt_content = prompt_template.format({'histories': histories}) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            prompt = '' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for order in prompt_rules['system_prompt_orders']: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if order == 'context_prompt': 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    prompt += context_prompt_content 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                elif order == 'pre_prompt': 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    prompt += (pre_prompt_content + '\n') if pre_prompt_content else '' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                elif order == 'histories_prompt': 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    prompt += histories_prompt_content 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt_template = PromptTemplateParser(template=query_prompt) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        query_prompt_content = prompt_template.format({'query': query}) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt += query_prompt_content 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt = re.sub(r'<\|.*?\|>', '', prompt) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        stops = prompt_rules.get('stops') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if stops is not None and len(stops) == 0: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            stops = None 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return prompt, stops 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def _set_context_variable(self, context: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if '#context#' in prompt_template.variable_keys: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if context: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                prompt_inputs['#context#'] = context     
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                prompt_inputs['#context#'] = '' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def _set_query_variable(self, query: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if '#query#' in prompt_template.variable_keys: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if query: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                prompt_inputs['#query#'] = query 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                prompt_inputs['#query#'] = '' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def _set_histories_variable(self, memory: BaseChatMemory, raw_prompt: str, conversation_histories_role: dict,  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                prompt_template: PromptTemplateParser, prompt_inputs: dict, model_instance: BaseLLM) -> None: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if '#histories#' in prompt_template.variable_keys: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if memory: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                tmp_human_message = PromptBuilder.to_human_message( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    prompt_content=raw_prompt, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    inputs={ '#histories#': '', **prompt_inputs } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                ) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                rest_tokens = self._calculate_rest_token(tmp_human_message, model_instance) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                memory.human_prefix = conversation_histories_role['user_prefix'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                memory.ai_prefix = conversation_histories_role['assistant_prefix'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                histories = self._get_history_messages_from_memory(memory, rest_tokens) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                prompt_inputs['#histories#'] = histories 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                prompt_inputs['#histories#'] = '' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def _append_chat_histories(self, memory: BaseChatMemory, prompt_messages: list[PromptMessage], model_instance: BaseLLM) -> None: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if memory: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            rest_tokens = self._calculate_rest_token(prompt_messages, model_instance) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            memory.human_prefix = MessageType.USER.value 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            memory.ai_prefix = MessageType.ASSISTANT.value 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            histories = self._get_history_messages_list_from_memory(memory, rest_tokens) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            prompt_messages.extend(histories) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def _calculate_rest_token(self, prompt_messages: BaseMessage, model_instance: BaseLLM) -> int: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        rest_tokens = 2000 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if model_instance.model_rules.max_tokens.max: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            curr_message_tokens = model_instance.get_num_tokens(to_prompt_messages(prompt_messages)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            max_tokens = model_instance.model_kwargs.max_tokens 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            rest_tokens = model_instance.model_rules.max_tokens.max - max_tokens - curr_message_tokens 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            rest_tokens = max(rest_tokens, 0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return rest_tokens 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def _format_prompt(self, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> str: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt = prompt_template.format( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            prompt_inputs 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        ) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt = re.sub(r'<\|.*?\|>', '', prompt) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return prompt 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def _get_chat_app_completion_model_prompt_messages(self, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            app_model_config: str, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            inputs: dict, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            query: str, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            context: Optional[str], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            memory: Optional[BaseChatMemory], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            model_instance: BaseLLM) -> List[PromptMessage]: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+         
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        raw_prompt = app_model_config.completion_prompt_config_dict['prompt']['text'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        conversation_histories_role = app_model_config.completion_prompt_config_dict['conversation_histories_role'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt_messages = [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt = '' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+         
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt_template = PromptTemplateParser(template=raw_prompt) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self._set_context_variable(context, prompt_template, prompt_inputs) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self._set_query_variable(query, prompt_template, prompt_inputs) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self._set_histories_variable(memory, raw_prompt, conversation_histories_role, prompt_template, prompt_inputs, model_instance) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt = self._format_prompt(prompt_template, prompt_inputs) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt_messages.append(PromptMessage(type = MessageType(MessageType.USER) ,content=prompt)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return prompt_messages 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def _get_chat_app_chat_model_prompt_messages(self, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            app_model_config: str, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            inputs: dict, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            query: str, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            context: Optional[str], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            memory: Optional[BaseChatMemory], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            model_instance: BaseLLM) -> List[PromptMessage]: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt_messages = [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for prompt_item in raw_prompt_list: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            raw_prompt = prompt_item['text'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            prompt = '' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            prompt_template = PromptTemplateParser(template=raw_prompt) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self._set_context_variable(context, prompt_template, prompt_inputs) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            prompt = self._format_prompt(prompt_template, prompt_inputs) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            prompt_messages.append(PromptMessage(type = MessageType(prompt_item['role']) ,content=prompt)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+         
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self._append_chat_histories(memory, prompt_messages, model_instance) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt_messages.append(PromptMessage(type = MessageType.USER ,content=query)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return prompt_messages 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def _get_completion_app_completion_model_prompt_messages(self, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                   app_model_config: str, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                   inputs: dict, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                   context: Optional[str]) -> List[PromptMessage]: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        raw_prompt = app_model_config.completion_prompt_config_dict['prompt']['text'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt_messages = [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt = '' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+         
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt_template = PromptTemplateParser(template=raw_prompt) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self._set_context_variable(context, prompt_template, prompt_inputs) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt = self._format_prompt(prompt_template, prompt_inputs) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt_messages.append(PromptMessage(type = MessageType(MessageType.USER) ,content=prompt)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return prompt_messages 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def _get_completion_app_chat_model_prompt_messages(self, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                   app_model_config: str, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                   inputs: dict, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                   context: Optional[str]) -> List[PromptMessage]: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        prompt_messages = [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for prompt_item in raw_prompt_list: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            raw_prompt = prompt_item['text'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            prompt = '' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            prompt_template = PromptTemplateParser(template=raw_prompt) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self._set_context_variable(context, prompt_template, prompt_inputs) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            prompt = self._format_prompt(prompt_template, prompt_inputs) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            prompt_messages.append(PromptMessage(type = MessageType(prompt_item['role']) ,content=prompt)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+         
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return prompt_messages 
			 |