|  | @@ -32,6 +32,7 @@ class OrchestratorRuleParser:
 | 
	
		
			
				|  |  |          self.tenant_id = tenant_id
 | 
	
		
			
				|  |  |          self.app_model_config = app_model_config
 | 
	
		
			
				|  |  |          self.agent_summary_model_name = "gpt-3.5-turbo-16k"
 | 
	
		
			
				|  |  | +        self.dataset_retrieve_model_name = "gpt-3.5-turbo"
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      def to_agent_executor(self, conversation_message_task: ConversationMessageTask, memory: Optional[BaseChatMemory],
 | 
	
		
			
				|  |  |                         rest_tokens: int, chain_callback: MainChainGatherCallbackHandler) \
 | 
	
	
		
			
				|  | @@ -89,11 +90,20 @@ class OrchestratorRuleParser:
 | 
	
		
			
				|  |  |              if len(tools) == 0:
 | 
	
		
			
				|  |  |                  return None
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +            dataset_llm = LLMBuilder.to_llm(
 | 
	
		
			
				|  |  | +                tenant_id=self.tenant_id,
 | 
	
		
			
				|  |  | +                model_name=self.dataset_retrieve_model_name,
 | 
	
		
			
				|  |  | +                temperature=0,
 | 
	
		
			
				|  |  | +                max_tokens=500,
 | 
	
		
			
				|  |  | +                callbacks=[DifyStdOutCallbackHandler()]
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  |              agent_configuration = AgentConfiguration(
 | 
	
		
			
				|  |  |                  strategy=planning_strategy,
 | 
	
		
			
				|  |  |                  llm=agent_llm,
 | 
	
		
			
				|  |  |                  tools=tools,
 | 
	
		
			
				|  |  |                  summary_llm=summary_llm,
 | 
	
		
			
				|  |  | +                dataset_llm=dataset_llm,
 | 
	
		
			
				|  |  |                  memory=memory,
 | 
	
		
			
				|  |  |                  callbacks=[chain_callback, agent_callback],
 | 
	
		
			
				|  |  |                  max_iterations=10,
 |