|  | @@ -60,7 +60,7 @@ def _create_weaviate_client(**kwargs: Any) -> Any:
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  def _default_score_normalizer(val: float) -> float:
 | 
	
		
			
				|  |  | -    return 1 - 1 / (1 + np.exp(val))
 | 
	
		
			
				|  |  | +    return 1 - val
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  def _json_serializable(value: Any) -> Any:
 | 
	
	
		
			
				|  | @@ -243,7 +243,8 @@ class Weaviate(VectorStore):
 | 
	
		
			
				|  |  |              query_obj = query_obj.with_where(kwargs.get("where_filter"))
 | 
	
		
			
				|  |  |          if kwargs.get("additional"):
 | 
	
		
			
				|  |  |              query_obj = query_obj.with_additional(kwargs.get("additional"))
 | 
	
		
			
				|  |  | -        result = query_obj.with_bm25(query=content).with_limit(k).do()
 | 
	
		
			
				|  |  | +        properties = ['text', 'dataset_id', 'doc_hash', 'doc_id', 'document_id']
 | 
	
		
			
				|  |  | +        result = query_obj.with_bm25(query=query, properties=properties).with_limit(k).do()
 | 
	
		
			
				|  |  |          if "errors" in result:
 | 
	
		
			
				|  |  |              raise ValueError(f"Error during query: {result['errors']}")
 | 
	
		
			
				|  |  |          docs = []
 | 
	
	
		
			
				|  | @@ -380,14 +381,14 @@ class Weaviate(VectorStore):
 | 
	
		
			
				|  |  |              result = (
 | 
	
		
			
				|  |  |                  query_obj.with_near_vector(vector)
 | 
	
		
			
				|  |  |                  .with_limit(k)
 | 
	
		
			
				|  |  | -                .with_additional("vector")
 | 
	
		
			
				|  |  | +                .with_additional(["vector", "distance"])
 | 
	
		
			
				|  |  |                  .do()
 | 
	
		
			
				|  |  |              )
 | 
	
		
			
				|  |  |          else:
 | 
	
		
			
				|  |  |              result = (
 | 
	
		
			
				|  |  |                  query_obj.with_near_text(content)
 | 
	
		
			
				|  |  |                  .with_limit(k)
 | 
	
		
			
				|  |  | -                .with_additional("vector")
 | 
	
		
			
				|  |  | +                .with_additional(["vector", "distance"])
 | 
	
		
			
				|  |  |                  .do()
 | 
	
		
			
				|  |  |              )
 | 
	
		
			
				|  |  |  
 | 
	
	
		
			
				|  | @@ -397,7 +398,7 @@ class Weaviate(VectorStore):
 | 
	
		
			
				|  |  |          docs_and_scores = []
 | 
	
		
			
				|  |  |          for res in result["data"]["Get"][self._index_name]:
 | 
	
		
			
				|  |  |              text = res.pop(self._text_key)
 | 
	
		
			
				|  |  | -            score = np.dot(res["_additional"]["vector"], embedded_query)
 | 
	
		
			
				|  |  | +            score = res["_additional"]["distance"]
 | 
	
		
			
				|  |  |              docs_and_scores.append((Document(page_content=text, metadata=res), score))
 | 
	
		
			
				|  |  |          return docs_and_scores
 | 
	
		
			
				|  |  |  
 |