|  | @@ -0,0 +1,1691 @@
 | 
	
		
			
				|  |  | +"""Wrapper around Qdrant vector database."""
 | 
	
		
			
				|  |  | +from __future__ import annotations
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +import asyncio
 | 
	
		
			
				|  |  | +import functools
 | 
	
		
			
				|  |  | +import uuid
 | 
	
		
			
				|  |  | +import warnings
 | 
	
		
			
				|  |  | +from itertools import islice
 | 
	
		
			
				|  |  | +from operator import itemgetter
 | 
	
		
			
				|  |  | +from typing import (
 | 
	
		
			
				|  |  | +    TYPE_CHECKING,
 | 
	
		
			
				|  |  | +    Any,
 | 
	
		
			
				|  |  | +    Callable,
 | 
	
		
			
				|  |  | +    Dict,
 | 
	
		
			
				|  |  | +    Generator,
 | 
	
		
			
				|  |  | +    Iterable,
 | 
	
		
			
				|  |  | +    List,
 | 
	
		
			
				|  |  | +    Optional,
 | 
	
		
			
				|  |  | +    Sequence,
 | 
	
		
			
				|  |  | +    Tuple,
 | 
	
		
			
				|  |  | +    Type,
 | 
	
		
			
				|  |  | +    Union,
 | 
	
		
			
				|  |  | +)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +import numpy as np
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +from langchain.docstore.document import Document
 | 
	
		
			
				|  |  | +from langchain.embeddings.base import Embeddings
 | 
	
		
			
				|  |  | +from langchain.vectorstores import VectorStore
 | 
	
		
			
				|  |  | +from langchain.vectorstores.utils import maximal_marginal_relevance
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +if TYPE_CHECKING:
 | 
	
		
			
				|  |  | +    from qdrant_client import grpc  # noqa
 | 
	
		
			
				|  |  | +    from qdrant_client.conversions import common_types
 | 
	
		
			
				|  |  | +    from qdrant_client.http import models as rest
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    DictFilter = Dict[str, Union[str, int, bool, dict, list]]
 | 
	
		
			
				|  |  | +    MetadataFilter = Union[DictFilter, common_types.Filter]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +class QdrantException(Exception):
 | 
	
		
			
				|  |  | +    """Base class for all the Qdrant related exceptions"""
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def sync_call_fallback(method: Callable) -> Callable:
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    Decorator to call the synchronous method of the class if the async method is not
 | 
	
		
			
				|  |  | +    implemented. This decorator might be only used for the methods that are defined
 | 
	
		
			
				|  |  | +    as async in the class.
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    @functools.wraps(method)
 | 
	
		
			
				|  |  | +    async def wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
 | 
	
		
			
				|  |  | +        try:
 | 
	
		
			
				|  |  | +            return await method(self, *args, **kwargs)
 | 
	
		
			
				|  |  | +        except NotImplementedError:
 | 
	
		
			
				|  |  | +            # If the async method is not implemented, call the synchronous method
 | 
	
		
			
				|  |  | +            # by removing the first letter from the method name. For example,
 | 
	
		
			
				|  |  | +            # if the async method is called ``aaad_texts``, the synchronous method
 | 
	
		
			
				|  |  | +            # will be called ``aad_texts``.
 | 
	
		
			
				|  |  | +            sync_method = functools.partial(
 | 
	
		
			
				|  |  | +                getattr(self, method.__name__[1:]), *args, **kwargs
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +            return await asyncio.get_event_loop().run_in_executor(None, sync_method)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    return wrapper
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +class Qdrant(VectorStore):
 | 
	
		
			
				|  |  | +    """Wrapper around Qdrant vector database.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    To use you should have the ``qdrant-client`` package installed.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    Example:
 | 
	
		
			
				|  |  | +        .. code-block:: python
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            from qdrant_client import QdrantClient
 | 
	
		
			
				|  |  | +            from langchain import Qdrant
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            client = QdrantClient()
 | 
	
		
			
				|  |  | +            collection_name = "MyCollection"
 | 
	
		
			
				|  |  | +            qdrant = Qdrant(client, collection_name, embedding_function)
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    CONTENT_KEY = "page_content"
 | 
	
		
			
				|  |  | +    METADATA_KEY = "metadata"
 | 
	
		
			
				|  |  | +    VECTOR_NAME = None
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def __init__(
 | 
	
		
			
				|  |  | +        self,
 | 
	
		
			
				|  |  | +        client: Any,
 | 
	
		
			
				|  |  | +        collection_name: str,
 | 
	
		
			
				|  |  | +        embeddings: Optional[Embeddings] = None,
 | 
	
		
			
				|  |  | +        content_payload_key: str = CONTENT_KEY,
 | 
	
		
			
				|  |  | +        metadata_payload_key: str = METADATA_KEY,
 | 
	
		
			
				|  |  | +        distance_strategy: str = "COSINE",
 | 
	
		
			
				|  |  | +        vector_name: Optional[str] = VECTOR_NAME,
 | 
	
		
			
				|  |  | +        embedding_function: Optional[Callable] = None,  # deprecated
 | 
	
		
			
				|  |  | +    ):
 | 
	
		
			
				|  |  | +        """Initialize with necessary components."""
 | 
	
		
			
				|  |  | +        try:
 | 
	
		
			
				|  |  | +            import qdrant_client
 | 
	
		
			
				|  |  | +        except ImportError:
 | 
	
		
			
				|  |  | +            raise ValueError(
 | 
	
		
			
				|  |  | +                "Could not import qdrant-client python package. "
 | 
	
		
			
				|  |  | +                "Please install it with `pip install qdrant-client`."
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        if not isinstance(client, qdrant_client.QdrantClient):
 | 
	
		
			
				|  |  | +            raise ValueError(
 | 
	
		
			
				|  |  | +                f"client should be an instance of qdrant_client.QdrantClient, "
 | 
	
		
			
				|  |  | +                f"got {type(client)}"
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        if embeddings is None and embedding_function is None:
 | 
	
		
			
				|  |  | +            raise ValueError(
 | 
	
		
			
				|  |  | +                "`embeddings` value can't be None. Pass `Embeddings` instance."
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        if embeddings is not None and embedding_function is not None:
 | 
	
		
			
				|  |  | +            raise ValueError(
 | 
	
		
			
				|  |  | +                "Both `embeddings` and `embedding_function` are passed. "
 | 
	
		
			
				|  |  | +                "Use `embeddings` only."
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        self._embeddings = embeddings
 | 
	
		
			
				|  |  | +        self._embeddings_function = embedding_function
 | 
	
		
			
				|  |  | +        self.client: qdrant_client.QdrantClient = client
 | 
	
		
			
				|  |  | +        self.collection_name = collection_name
 | 
	
		
			
				|  |  | +        self.content_payload_key = content_payload_key or self.CONTENT_KEY
 | 
	
		
			
				|  |  | +        self.metadata_payload_key = metadata_payload_key or self.METADATA_KEY
 | 
	
		
			
				|  |  | +        self.vector_name = vector_name or self.VECTOR_NAME
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        if embedding_function is not None:
 | 
	
		
			
				|  |  | +            warnings.warn(
 | 
	
		
			
				|  |  | +                "Using `embedding_function` is deprecated. "
 | 
	
		
			
				|  |  | +                "Pass `Embeddings` instance to `embeddings` instead."
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        if not isinstance(embeddings, Embeddings):
 | 
	
		
			
				|  |  | +            warnings.warn(
 | 
	
		
			
				|  |  | +                "`embeddings` should be an instance of `Embeddings`."
 | 
	
		
			
				|  |  | +                "Using `embeddings` as `embedding_function` which is deprecated"
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +            self._embeddings_function = embeddings
 | 
	
		
			
				|  |  | +            self._embeddings = None
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        self.distance_strategy = distance_strategy.upper()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    @property
 | 
	
		
			
				|  |  | +    def embeddings(self) -> Optional[Embeddings]:
 | 
	
		
			
				|  |  | +        return self._embeddings
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def add_texts(
 | 
	
		
			
				|  |  | +        self,
 | 
	
		
			
				|  |  | +        texts: Iterable[str],
 | 
	
		
			
				|  |  | +        metadatas: Optional[List[dict]] = None,
 | 
	
		
			
				|  |  | +        ids: Optional[Sequence[str]] = None,
 | 
	
		
			
				|  |  | +        batch_size: int = 64,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> List[str]:
 | 
	
		
			
				|  |  | +        """Run more texts through the embeddings and add to the vectorstore.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            texts: Iterable of strings to add to the vectorstore.
 | 
	
		
			
				|  |  | +            metadatas: Optional list of metadatas associated with the texts.
 | 
	
		
			
				|  |  | +            ids:
 | 
	
		
			
				|  |  | +                Optional list of ids to associate with the texts. Ids have to be
 | 
	
		
			
				|  |  | +                uuid-like strings.
 | 
	
		
			
				|  |  | +            batch_size:
 | 
	
		
			
				|  |  | +                How many vectors upload per-request.
 | 
	
		
			
				|  |  | +                Default: 64
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            List of ids from adding the texts into the vectorstore.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        added_ids = []
 | 
	
		
			
				|  |  | +        for batch_ids, points in self._generate_rest_batches(
 | 
	
		
			
				|  |  | +            texts, metadatas, ids, batch_size
 | 
	
		
			
				|  |  | +        ):
 | 
	
		
			
				|  |  | +            self.client.upsert(
 | 
	
		
			
				|  |  | +                collection_name=self.collection_name, points=points, **kwargs
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +            added_ids.extend(batch_ids)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        return added_ids
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    @sync_call_fallback
 | 
	
		
			
				|  |  | +    async def aadd_texts(
 | 
	
		
			
				|  |  | +        self,
 | 
	
		
			
				|  |  | +        texts: Iterable[str],
 | 
	
		
			
				|  |  | +        metadatas: Optional[List[dict]] = None,
 | 
	
		
			
				|  |  | +        ids: Optional[Sequence[str]] = None,
 | 
	
		
			
				|  |  | +        batch_size: int = 64,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> List[str]:
 | 
	
		
			
				|  |  | +        """Run more texts through the embeddings and add to the vectorstore.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            texts: Iterable of strings to add to the vectorstore.
 | 
	
		
			
				|  |  | +            metadatas: Optional list of metadatas associated with the texts.
 | 
	
		
			
				|  |  | +            ids:
 | 
	
		
			
				|  |  | +                Optional list of ids to associate with the texts. Ids have to be
 | 
	
		
			
				|  |  | +                uuid-like strings.
 | 
	
		
			
				|  |  | +            batch_size:
 | 
	
		
			
				|  |  | +                How many vectors upload per-request.
 | 
	
		
			
				|  |  | +                Default: 64
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            List of ids from adding the texts into the vectorstore.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        from qdrant_client import grpc  # noqa
 | 
	
		
			
				|  |  | +        from qdrant_client.conversions.conversion import RestToGrpc
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        added_ids = []
 | 
	
		
			
				|  |  | +        for batch_ids, points in self._generate_rest_batches(
 | 
	
		
			
				|  |  | +            texts, metadatas, ids, batch_size
 | 
	
		
			
				|  |  | +        ):
 | 
	
		
			
				|  |  | +            await self.client.async_grpc_points.Upsert(
 | 
	
		
			
				|  |  | +                grpc.UpsertPoints(
 | 
	
		
			
				|  |  | +                    collection_name=self.collection_name,
 | 
	
		
			
				|  |  | +                    points=[RestToGrpc.convert_point_struct(point) for point in points],
 | 
	
		
			
				|  |  | +                )
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +            added_ids.extend(batch_ids)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        return added_ids
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def similarity_search(
 | 
	
		
			
				|  |  | +        self,
 | 
	
		
			
				|  |  | +        query: str,
 | 
	
		
			
				|  |  | +        k: int = 4,
 | 
	
		
			
				|  |  | +        filter: Optional[MetadataFilter] = None,
 | 
	
		
			
				|  |  | +        search_params: Optional[common_types.SearchParams] = None,
 | 
	
		
			
				|  |  | +        offset: int = 0,
 | 
	
		
			
				|  |  | +        score_threshold: Optional[float] = None,
 | 
	
		
			
				|  |  | +        consistency: Optional[common_types.ReadConsistency] = None,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> List[Tuple[Document, float]]:
 | 
	
		
			
				|  |  | +        """Return docs most similar to query.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            query: Text to look up documents similar to.
 | 
	
		
			
				|  |  | +            k: Number of Documents to return. Defaults to 4.
 | 
	
		
			
				|  |  | +            filter: Filter by metadata. Defaults to None.
 | 
	
		
			
				|  |  | +            search_params: Additional search params
 | 
	
		
			
				|  |  | +            offset:
 | 
	
		
			
				|  |  | +                Offset of the first result to return.
 | 
	
		
			
				|  |  | +                May be used to paginate results.
 | 
	
		
			
				|  |  | +                Note: large offset values may cause performance issues.
 | 
	
		
			
				|  |  | +            score_threshold:
 | 
	
		
			
				|  |  | +                Define a minimal score threshold for the result.
 | 
	
		
			
				|  |  | +                If defined, less similar results will not be returned.
 | 
	
		
			
				|  |  | +                Score of the returned result might be higher or smaller than the
 | 
	
		
			
				|  |  | +                threshold depending on the Distance function used.
 | 
	
		
			
				|  |  | +                E.g. for cosine similarity only higher scores will be returned.
 | 
	
		
			
				|  |  | +            consistency:
 | 
	
		
			
				|  |  | +                Read consistency of the search. Defines how many replicas should be
 | 
	
		
			
				|  |  | +                queried before returning the result.
 | 
	
		
			
				|  |  | +                Values:
 | 
	
		
			
				|  |  | +                - int - number of replicas to query, values should present in all
 | 
	
		
			
				|  |  | +                        queried replicas
 | 
	
		
			
				|  |  | +                - 'majority' - query all replicas, but return values present in the
 | 
	
		
			
				|  |  | +                               majority of replicas
 | 
	
		
			
				|  |  | +                - 'quorum' - query the majority of replicas, return values present in
 | 
	
		
			
				|  |  | +                             all of them
 | 
	
		
			
				|  |  | +                - 'all' - query all replicas, and return values present in all replicas
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            List of Documents most similar to the query.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        results = self.similarity_search_with_score(
 | 
	
		
			
				|  |  | +            query,
 | 
	
		
			
				|  |  | +            k,
 | 
	
		
			
				|  |  | +            filter=filter,
 | 
	
		
			
				|  |  | +            search_params=search_params,
 | 
	
		
			
				|  |  | +            offset=offset,
 | 
	
		
			
				|  |  | +            score_threshold=score_threshold,
 | 
	
		
			
				|  |  | +            consistency=consistency,
 | 
	
		
			
				|  |  | +            **kwargs,
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +        return list(map(itemgetter(0), results))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    @sync_call_fallback
 | 
	
		
			
				|  |  | +    async def asimilarity_search(
 | 
	
		
			
				|  |  | +        self,
 | 
	
		
			
				|  |  | +        query: str,
 | 
	
		
			
				|  |  | +        k: int = 4,
 | 
	
		
			
				|  |  | +        filter: Optional[MetadataFilter] = None,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> List[Document]:
 | 
	
		
			
				|  |  | +        """Return docs most similar to query.
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            query: Text to look up documents similar to.
 | 
	
		
			
				|  |  | +            k: Number of Documents to return. Defaults to 4.
 | 
	
		
			
				|  |  | +            filter: Filter by metadata. Defaults to None.
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            List of Documents most similar to the query.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        results = await self.asimilarity_search_with_score(query, k, filter, **kwargs)
 | 
	
		
			
				|  |  | +        return list(map(itemgetter(0), results))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def similarity_search_with_score(
 | 
	
		
			
				|  |  | +        self,
 | 
	
		
			
				|  |  | +        query: str,
 | 
	
		
			
				|  |  | +        k: int = 4,
 | 
	
		
			
				|  |  | +        filter: Optional[MetadataFilter] = None,
 | 
	
		
			
				|  |  | +        search_params: Optional[common_types.SearchParams] = None,
 | 
	
		
			
				|  |  | +        offset: int = 0,
 | 
	
		
			
				|  |  | +        score_threshold: Optional[float] = None,
 | 
	
		
			
				|  |  | +        consistency: Optional[common_types.ReadConsistency] = None,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> List[Tuple[Document, float]]:
 | 
	
		
			
				|  |  | +        """Return docs most similar to query.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            query: Text to look up documents similar to.
 | 
	
		
			
				|  |  | +            k: Number of Documents to return. Defaults to 4.
 | 
	
		
			
				|  |  | +            filter: Filter by metadata. Defaults to None.
 | 
	
		
			
				|  |  | +            search_params: Additional search params
 | 
	
		
			
				|  |  | +            offset:
 | 
	
		
			
				|  |  | +                Offset of the first result to return.
 | 
	
		
			
				|  |  | +                May be used to paginate results.
 | 
	
		
			
				|  |  | +                Note: large offset values may cause performance issues.
 | 
	
		
			
				|  |  | +            score_threshold:
 | 
	
		
			
				|  |  | +                Define a minimal score threshold for the result.
 | 
	
		
			
				|  |  | +                If defined, less similar results will not be returned.
 | 
	
		
			
				|  |  | +                Score of the returned result might be higher or smaller than the
 | 
	
		
			
				|  |  | +                threshold depending on the Distance function used.
 | 
	
		
			
				|  |  | +                E.g. for cosine similarity only higher scores will be returned.
 | 
	
		
			
				|  |  | +            consistency:
 | 
	
		
			
				|  |  | +                Read consistency of the search. Defines how many replicas should be
 | 
	
		
			
				|  |  | +                queried before returning the result.
 | 
	
		
			
				|  |  | +                Values:
 | 
	
		
			
				|  |  | +                - int - number of replicas to query, values should present in all
 | 
	
		
			
				|  |  | +                        queried replicas
 | 
	
		
			
				|  |  | +                - 'majority' - query all replicas, but return values present in the
 | 
	
		
			
				|  |  | +                               majority of replicas
 | 
	
		
			
				|  |  | +                - 'quorum' - query the majority of replicas, return values present in
 | 
	
		
			
				|  |  | +                             all of them
 | 
	
		
			
				|  |  | +                - 'all' - query all replicas, and return values present in all replicas
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            List of documents most similar to the query text and distance for each.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        return self.similarity_search_with_score_by_vector(
 | 
	
		
			
				|  |  | +            self._embed_query(query),
 | 
	
		
			
				|  |  | +            k,
 | 
	
		
			
				|  |  | +            filter=filter,
 | 
	
		
			
				|  |  | +            search_params=search_params,
 | 
	
		
			
				|  |  | +            offset=offset,
 | 
	
		
			
				|  |  | +            score_threshold=score_threshold,
 | 
	
		
			
				|  |  | +            consistency=consistency,
 | 
	
		
			
				|  |  | +            **kwargs,
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    @sync_call_fallback
 | 
	
		
			
				|  |  | +    async def asimilarity_search_with_score(
 | 
	
		
			
				|  |  | +        self,
 | 
	
		
			
				|  |  | +        query: str,
 | 
	
		
			
				|  |  | +        k: int = 4,
 | 
	
		
			
				|  |  | +        filter: Optional[MetadataFilter] = None,
 | 
	
		
			
				|  |  | +        search_params: Optional[common_types.SearchParams] = None,
 | 
	
		
			
				|  |  | +        offset: int = 0,
 | 
	
		
			
				|  |  | +        score_threshold: Optional[float] = None,
 | 
	
		
			
				|  |  | +        consistency: Optional[common_types.ReadConsistency] = None,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> List[Tuple[Document, float]]:
 | 
	
		
			
				|  |  | +        """Return docs most similar to query.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            query: Text to look up documents similar to.
 | 
	
		
			
				|  |  | +            k: Number of Documents to return. Defaults to 4.
 | 
	
		
			
				|  |  | +            filter: Filter by metadata. Defaults to None.
 | 
	
		
			
				|  |  | +            search_params: Additional search params
 | 
	
		
			
				|  |  | +            offset:
 | 
	
		
			
				|  |  | +                Offset of the first result to return.
 | 
	
		
			
				|  |  | +                May be used to paginate results.
 | 
	
		
			
				|  |  | +                Note: large offset values may cause performance issues.
 | 
	
		
			
				|  |  | +            score_threshold:
 | 
	
		
			
				|  |  | +                Define a minimal score threshold for the result.
 | 
	
		
			
				|  |  | +                If defined, less similar results will not be returned.
 | 
	
		
			
				|  |  | +                Score of the returned result might be higher or smaller than the
 | 
	
		
			
				|  |  | +                threshold depending on the Distance function used.
 | 
	
		
			
				|  |  | +                E.g. for cosine similarity only higher scores will be returned.
 | 
	
		
			
				|  |  | +            consistency:
 | 
	
		
			
				|  |  | +                Read consistency of the search. Defines how many replicas should be
 | 
	
		
			
				|  |  | +                queried before returning the result.
 | 
	
		
			
				|  |  | +                Values:
 | 
	
		
			
				|  |  | +                - int - number of replicas to query, values should present in all
 | 
	
		
			
				|  |  | +                        queried replicas
 | 
	
		
			
				|  |  | +                - 'majority' - query all replicas, but return values present in the
 | 
	
		
			
				|  |  | +                               majority of replicas
 | 
	
		
			
				|  |  | +                - 'quorum' - query the majority of replicas, return values present in
 | 
	
		
			
				|  |  | +                             all of them
 | 
	
		
			
				|  |  | +                - 'all' - query all replicas, and return values present in all replicas
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            List of documents most similar to the query text and distance for each.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        return await self.asimilarity_search_with_score_by_vector(
 | 
	
		
			
				|  |  | +            self._embed_query(query),
 | 
	
		
			
				|  |  | +            k,
 | 
	
		
			
				|  |  | +            filter=filter,
 | 
	
		
			
				|  |  | +            search_params=search_params,
 | 
	
		
			
				|  |  | +            offset=offset,
 | 
	
		
			
				|  |  | +            score_threshold=score_threshold,
 | 
	
		
			
				|  |  | +            consistency=consistency,
 | 
	
		
			
				|  |  | +            **kwargs,
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def similarity_search_by_vector(
 | 
	
		
			
				|  |  | +        self,
 | 
	
		
			
				|  |  | +        embedding: List[float],
 | 
	
		
			
				|  |  | +        k: int = 4,
 | 
	
		
			
				|  |  | +        filter: Optional[MetadataFilter] = None,
 | 
	
		
			
				|  |  | +        search_params: Optional[common_types.SearchParams] = None,
 | 
	
		
			
				|  |  | +        offset: int = 0,
 | 
	
		
			
				|  |  | +        score_threshold: Optional[float] = None,
 | 
	
		
			
				|  |  | +        consistency: Optional[common_types.ReadConsistency] = None,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> List[Document]:
 | 
	
		
			
				|  |  | +        """Return docs most similar to embedding vector.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            embedding: Embedding vector to look up documents similar to.
 | 
	
		
			
				|  |  | +            k: Number of Documents to return. Defaults to 4.
 | 
	
		
			
				|  |  | +            filter: Filter by metadata. Defaults to None.
 | 
	
		
			
				|  |  | +            search_params: Additional search params
 | 
	
		
			
				|  |  | +            offset:
 | 
	
		
			
				|  |  | +                Offset of the first result to return.
 | 
	
		
			
				|  |  | +                May be used to paginate results.
 | 
	
		
			
				|  |  | +                Note: large offset values may cause performance issues.
 | 
	
		
			
				|  |  | +            score_threshold:
 | 
	
		
			
				|  |  | +                Define a minimal score threshold for the result.
 | 
	
		
			
				|  |  | +                If defined, less similar results will not be returned.
 | 
	
		
			
				|  |  | +                Score of the returned result might be higher or smaller than the
 | 
	
		
			
				|  |  | +                threshold depending on the Distance function used.
 | 
	
		
			
				|  |  | +                E.g. for cosine similarity only higher scores will be returned.
 | 
	
		
			
				|  |  | +            consistency:
 | 
	
		
			
				|  |  | +                Read consistency of the search. Defines how many replicas should be
 | 
	
		
			
				|  |  | +                queried before returning the result.
 | 
	
		
			
				|  |  | +                Values:
 | 
	
		
			
				|  |  | +                - int - number of replicas to query, values should present in all
 | 
	
		
			
				|  |  | +                        queried replicas
 | 
	
		
			
				|  |  | +                - 'majority' - query all replicas, but return values present in the
 | 
	
		
			
				|  |  | +                               majority of replicas
 | 
	
		
			
				|  |  | +                - 'quorum' - query the majority of replicas, return values present in
 | 
	
		
			
				|  |  | +                             all of them
 | 
	
		
			
				|  |  | +                - 'all' - query all replicas, and return values present in all replicas
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            List of Documents most similar to the query.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        results = self.similarity_search_with_score_by_vector(
 | 
	
		
			
				|  |  | +            embedding,
 | 
	
		
			
				|  |  | +            k,
 | 
	
		
			
				|  |  | +            filter=filter,
 | 
	
		
			
				|  |  | +            search_params=search_params,
 | 
	
		
			
				|  |  | +            offset=offset,
 | 
	
		
			
				|  |  | +            score_threshold=score_threshold,
 | 
	
		
			
				|  |  | +            consistency=consistency,
 | 
	
		
			
				|  |  | +            **kwargs,
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +        return list(map(itemgetter(0), results))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    @sync_call_fallback
 | 
	
		
			
				|  |  | +    async def asimilarity_search_by_vector(
 | 
	
		
			
				|  |  | +        self,
 | 
	
		
			
				|  |  | +        embedding: List[float],
 | 
	
		
			
				|  |  | +        k: int = 4,
 | 
	
		
			
				|  |  | +        filter: Optional[MetadataFilter] = None,
 | 
	
		
			
				|  |  | +        search_params: Optional[common_types.SearchParams] = None,
 | 
	
		
			
				|  |  | +        offset: int = 0,
 | 
	
		
			
				|  |  | +        score_threshold: Optional[float] = None,
 | 
	
		
			
				|  |  | +        consistency: Optional[common_types.ReadConsistency] = None,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> List[Document]:
 | 
	
		
			
				|  |  | +        """Return docs most similar to embedding vector.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            embedding: Embedding vector to look up documents similar to.
 | 
	
		
			
				|  |  | +            k: Number of Documents to return. Defaults to 4.
 | 
	
		
			
				|  |  | +            filter: Filter by metadata. Defaults to None.
 | 
	
		
			
				|  |  | +            search_params: Additional search params
 | 
	
		
			
				|  |  | +            offset:
 | 
	
		
			
				|  |  | +                Offset of the first result to return.
 | 
	
		
			
				|  |  | +                May be used to paginate results.
 | 
	
		
			
				|  |  | +                Note: large offset values may cause performance issues.
 | 
	
		
			
				|  |  | +            score_threshold:
 | 
	
		
			
				|  |  | +                Define a minimal score threshold for the result.
 | 
	
		
			
				|  |  | +                If defined, less similar results will not be returned.
 | 
	
		
			
				|  |  | +                Score of the returned result might be higher or smaller than the
 | 
	
		
			
				|  |  | +                threshold depending on the Distance function used.
 | 
	
		
			
				|  |  | +                E.g. for cosine similarity only higher scores will be returned.
 | 
	
		
			
				|  |  | +            consistency:
 | 
	
		
			
				|  |  | +                Read consistency of the search. Defines how many replicas should be
 | 
	
		
			
				|  |  | +                queried before returning the result.
 | 
	
		
			
				|  |  | +                Values:
 | 
	
		
			
				|  |  | +                - int - number of replicas to query, values should present in all
 | 
	
		
			
				|  |  | +                        queried replicas
 | 
	
		
			
				|  |  | +                - 'majority' - query all replicas, but return values present in the
 | 
	
		
			
				|  |  | +                               majority of replicas
 | 
	
		
			
				|  |  | +                - 'quorum' - query the majority of replicas, return values present in
 | 
	
		
			
				|  |  | +                             all of them
 | 
	
		
			
				|  |  | +                - 'all' - query all replicas, and return values present in all replicas
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            List of Documents most similar to the query.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        results = await self.asimilarity_search_with_score_by_vector(
 | 
	
		
			
				|  |  | +            embedding,
 | 
	
		
			
				|  |  | +            k,
 | 
	
		
			
				|  |  | +            filter=filter,
 | 
	
		
			
				|  |  | +            search_params=search_params,
 | 
	
		
			
				|  |  | +            offset=offset,
 | 
	
		
			
				|  |  | +            score_threshold=score_threshold,
 | 
	
		
			
				|  |  | +            consistency=consistency,
 | 
	
		
			
				|  |  | +            **kwargs,
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +        return list(map(itemgetter(0), results))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def similarity_search_with_score_by_vector(
 | 
	
		
			
				|  |  | +        self,
 | 
	
		
			
				|  |  | +        embedding: List[float],
 | 
	
		
			
				|  |  | +        k: int = 4,
 | 
	
		
			
				|  |  | +        filter: Optional[MetadataFilter] = None,
 | 
	
		
			
				|  |  | +        search_params: Optional[common_types.SearchParams] = None,
 | 
	
		
			
				|  |  | +        offset: int = 0,
 | 
	
		
			
				|  |  | +        score_threshold: Optional[float] = None,
 | 
	
		
			
				|  |  | +        consistency: Optional[common_types.ReadConsistency] = None,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> List[Tuple[Document, float]]:
 | 
	
		
			
				|  |  | +        """Return docs most similar to embedding vector.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            embedding: Embedding vector to look up documents similar to.
 | 
	
		
			
				|  |  | +            k: Number of Documents to return. Defaults to 4.
 | 
	
		
			
				|  |  | +            filter: Filter by metadata. Defaults to None.
 | 
	
		
			
				|  |  | +            search_params: Additional search params
 | 
	
		
			
				|  |  | +            offset:
 | 
	
		
			
				|  |  | +                Offset of the first result to return.
 | 
	
		
			
				|  |  | +                May be used to paginate results.
 | 
	
		
			
				|  |  | +                Note: large offset values may cause performance issues.
 | 
	
		
			
				|  |  | +            score_threshold:
 | 
	
		
			
				|  |  | +                Define a minimal score threshold for the result.
 | 
	
		
			
				|  |  | +                If defined, less similar results will not be returned.
 | 
	
		
			
				|  |  | +                Score of the returned result might be higher or smaller than the
 | 
	
		
			
				|  |  | +                threshold depending on the Distance function used.
 | 
	
		
			
				|  |  | +                E.g. for cosine similarity only higher scores will be returned.
 | 
	
		
			
				|  |  | +            consistency:
 | 
	
		
			
				|  |  | +                Read consistency of the search. Defines how many replicas should be
 | 
	
		
			
				|  |  | +                queried before returning the result.
 | 
	
		
			
				|  |  | +                Values:
 | 
	
		
			
				|  |  | +                - int - number of replicas to query, values should present in all
 | 
	
		
			
				|  |  | +                        queried replicas
 | 
	
		
			
				|  |  | +                - 'majority' - query all replicas, but return values present in the
 | 
	
		
			
				|  |  | +                               majority of replicas
 | 
	
		
			
				|  |  | +                - 'quorum' - query the majority of replicas, return values present in
 | 
	
		
			
				|  |  | +                             all of them
 | 
	
		
			
				|  |  | +                - 'all' - query all replicas, and return values present in all replicas
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            List of documents most similar to the query text and distance for each.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        if filter is not None and isinstance(filter, dict):
 | 
	
		
			
				|  |  | +            warnings.warn(
 | 
	
		
			
				|  |  | +                "Using dict as a `filter` is deprecated. Please use qdrant-client "
 | 
	
		
			
				|  |  | +                "filters directly: "
 | 
	
		
			
				|  |  | +                "https://qdrant.tech/documentation/concepts/filtering/",
 | 
	
		
			
				|  |  | +                DeprecationWarning,
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +            qdrant_filter = self._qdrant_filter_from_dict(filter)
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            qdrant_filter = filter
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        query_vector = embedding
 | 
	
		
			
				|  |  | +        if self.vector_name is not None:
 | 
	
		
			
				|  |  | +            query_vector = (self.vector_name, embedding)  # type: ignore[assignment]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        results = self.client.search(
 | 
	
		
			
				|  |  | +            collection_name=self.collection_name,
 | 
	
		
			
				|  |  | +            query_vector=query_vector,
 | 
	
		
			
				|  |  | +            query_filter=qdrant_filter,
 | 
	
		
			
				|  |  | +            search_params=search_params,
 | 
	
		
			
				|  |  | +            limit=k,
 | 
	
		
			
				|  |  | +            offset=offset,
 | 
	
		
			
				|  |  | +            with_payload=True,
 | 
	
		
			
				|  |  | +            with_vectors=True,  # Langchain does not expect vectors to be returned
 | 
	
		
			
				|  |  | +            score_threshold=score_threshold,
 | 
	
		
			
				|  |  | +            consistency=consistency,
 | 
	
		
			
				|  |  | +            **kwargs,
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +        return [
 | 
	
		
			
				|  |  | +            (
 | 
	
		
			
				|  |  | +                self._document_from_scored_point(
 | 
	
		
			
				|  |  | +                    result, self.content_payload_key, self.metadata_payload_key
 | 
	
		
			
				|  |  | +                ),
 | 
	
		
			
				|  |  | +                result.score,
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +            for result in results
 | 
	
		
			
				|  |  | +        ]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    @sync_call_fallback
 | 
	
		
			
				|  |  | +    async def asimilarity_search_with_score_by_vector(
 | 
	
		
			
				|  |  | +        self,
 | 
	
		
			
				|  |  | +        embedding: List[float],
 | 
	
		
			
				|  |  | +        k: int = 4,
 | 
	
		
			
				|  |  | +        filter: Optional[MetadataFilter] = None,
 | 
	
		
			
				|  |  | +        search_params: Optional[common_types.SearchParams] = None,
 | 
	
		
			
				|  |  | +        offset: int = 0,
 | 
	
		
			
				|  |  | +        score_threshold: Optional[float] = None,
 | 
	
		
			
				|  |  | +        consistency: Optional[common_types.ReadConsistency] = None,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> List[Tuple[Document, float]]:
 | 
	
		
			
				|  |  | +        """Return docs most similar to embedding vector.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            embedding: Embedding vector to look up documents similar to.
 | 
	
		
			
				|  |  | +            k: Number of Documents to return. Defaults to 4.
 | 
	
		
			
				|  |  | +            filter: Filter by metadata. Defaults to None.
 | 
	
		
			
				|  |  | +            search_params: Additional search params
 | 
	
		
			
				|  |  | +            offset:
 | 
	
		
			
				|  |  | +                Offset of the first result to return.
 | 
	
		
			
				|  |  | +                May be used to paginate results.
 | 
	
		
			
				|  |  | +                Note: large offset values may cause performance issues.
 | 
	
		
			
				|  |  | +            score_threshold:
 | 
	
		
			
				|  |  | +                Define a minimal score threshold for the result.
 | 
	
		
			
				|  |  | +                If defined, less similar results will not be returned.
 | 
	
		
			
				|  |  | +                Score of the returned result might be higher or smaller than the
 | 
	
		
			
				|  |  | +                threshold depending on the Distance function used.
 | 
	
		
			
				|  |  | +                E.g. for cosine similarity only higher scores will be returned.
 | 
	
		
			
				|  |  | +            consistency:
 | 
	
		
			
				|  |  | +                Read consistency of the search. Defines how many replicas should be
 | 
	
		
			
				|  |  | +                queried before returning the result.
 | 
	
		
			
				|  |  | +                Values:
 | 
	
		
			
				|  |  | +                - int - number of replicas to query, values should present in all
 | 
	
		
			
				|  |  | +                        queried replicas
 | 
	
		
			
				|  |  | +                - 'majority' - query all replicas, but return values present in the
 | 
	
		
			
				|  |  | +                               majority of replicas
 | 
	
		
			
				|  |  | +                - 'quorum' - query the majority of replicas, return values present in
 | 
	
		
			
				|  |  | +                             all of them
 | 
	
		
			
				|  |  | +                - 'all' - query all replicas, and return values present in all replicas
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            List of documents most similar to the query text and distance for each.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        from qdrant_client import grpc  # noqa
 | 
	
		
			
				|  |  | +        from qdrant_client.conversions.conversion import RestToGrpc
 | 
	
		
			
				|  |  | +        from qdrant_client.http import models as rest
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        if filter is not None and isinstance(filter, dict):
 | 
	
		
			
				|  |  | +            warnings.warn(
 | 
	
		
			
				|  |  | +                "Using dict as a `filter` is deprecated. Please use qdrant-client "
 | 
	
		
			
				|  |  | +                "filters directly: "
 | 
	
		
			
				|  |  | +                "https://qdrant.tech/documentation/concepts/filtering/",
 | 
	
		
			
				|  |  | +                DeprecationWarning,
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +            qdrant_filter = self._qdrant_filter_from_dict(filter)
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            qdrant_filter = filter
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        if qdrant_filter is not None and isinstance(qdrant_filter, rest.Filter):
 | 
	
		
			
				|  |  | +            qdrant_filter = RestToGrpc.convert_filter(qdrant_filter)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        response = await self.client.async_grpc_points.Search(
 | 
	
		
			
				|  |  | +            grpc.SearchPoints(
 | 
	
		
			
				|  |  | +                collection_name=self.collection_name,
 | 
	
		
			
				|  |  | +                vector_name=self.vector_name,
 | 
	
		
			
				|  |  | +                vector=embedding,
 | 
	
		
			
				|  |  | +                filter=qdrant_filter,
 | 
	
		
			
				|  |  | +                params=search_params,
 | 
	
		
			
				|  |  | +                limit=k,
 | 
	
		
			
				|  |  | +                offset=offset,
 | 
	
		
			
				|  |  | +                with_payload=grpc.WithPayloadSelector(enable=True),
 | 
	
		
			
				|  |  | +                with_vectors=grpc.WithVectorsSelector(enable=False),
 | 
	
		
			
				|  |  | +                score_threshold=score_threshold,
 | 
	
		
			
				|  |  | +                read_consistency=consistency,
 | 
	
		
			
				|  |  | +                **kwargs,
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        return [
 | 
	
		
			
				|  |  | +            (
 | 
	
		
			
				|  |  | +                self._document_from_scored_point_grpc(
 | 
	
		
			
				|  |  | +                    result, self.content_payload_key, self.metadata_payload_key
 | 
	
		
			
				|  |  | +                ),
 | 
	
		
			
				|  |  | +                result.score,
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +            for result in response.result
 | 
	
		
			
				|  |  | +        ]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def max_marginal_relevance_search(
 | 
	
		
			
				|  |  | +        self,
 | 
	
		
			
				|  |  | +        query: str,
 | 
	
		
			
				|  |  | +        k: int = 4,
 | 
	
		
			
				|  |  | +        fetch_k: int = 20,
 | 
	
		
			
				|  |  | +        lambda_mult: float = 0.5,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> List[Document]:
 | 
	
		
			
				|  |  | +        """Return docs selected using the maximal marginal relevance.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Maximal marginal relevance optimizes for similarity to query AND diversity
 | 
	
		
			
				|  |  | +        among selected documents.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            query: Text to look up documents similar to.
 | 
	
		
			
				|  |  | +            k: Number of Documents to return. Defaults to 4.
 | 
	
		
			
				|  |  | +            fetch_k: Number of Documents to fetch to pass to MMR algorithm.
 | 
	
		
			
				|  |  | +                     Defaults to 20.
 | 
	
		
			
				|  |  | +            lambda_mult: Number between 0 and 1 that determines the degree
 | 
	
		
			
				|  |  | +                        of diversity among the results with 0 corresponding
 | 
	
		
			
				|  |  | +                        to maximum diversity and 1 to minimum diversity.
 | 
	
		
			
				|  |  | +                        Defaults to 0.5.
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            List of Documents selected by maximal marginal relevance.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        query_embedding = self._embed_query(query)
 | 
	
		
			
				|  |  | +        return self.max_marginal_relevance_search_by_vector(
 | 
	
		
			
				|  |  | +            query_embedding, k, fetch_k, lambda_mult, **kwargs
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    @sync_call_fallback
 | 
	
		
			
				|  |  | +    async def amax_marginal_relevance_search(
 | 
	
		
			
				|  |  | +        self,
 | 
	
		
			
				|  |  | +        query: str,
 | 
	
		
			
				|  |  | +        k: int = 4,
 | 
	
		
			
				|  |  | +        fetch_k: int = 20,
 | 
	
		
			
				|  |  | +        lambda_mult: float = 0.5,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> List[Document]:
 | 
	
		
			
				|  |  | +        """Return docs selected using the maximal marginal relevance.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Maximal marginal relevance optimizes for similarity to query AND diversity
 | 
	
		
			
				|  |  | +        among selected documents.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            query: Text to look up documents similar to.
 | 
	
		
			
				|  |  | +            k: Number of Documents to return. Defaults to 4.
 | 
	
		
			
				|  |  | +            fetch_k: Number of Documents to fetch to pass to MMR algorithm.
 | 
	
		
			
				|  |  | +                     Defaults to 20.
 | 
	
		
			
				|  |  | +            lambda_mult: Number between 0 and 1 that determines the degree
 | 
	
		
			
				|  |  | +                        of diversity among the results with 0 corresponding
 | 
	
		
			
				|  |  | +                        to maximum diversity and 1 to minimum diversity.
 | 
	
		
			
				|  |  | +                        Defaults to 0.5.
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            List of Documents selected by maximal marginal relevance.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        query_embedding = self._embed_query(query)
 | 
	
		
			
				|  |  | +        return await self.amax_marginal_relevance_search_by_vector(
 | 
	
		
			
				|  |  | +            query_embedding, k, fetch_k, lambda_mult, **kwargs
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def max_marginal_relevance_search_by_vector(
 | 
	
		
			
				|  |  | +        self,
 | 
	
		
			
				|  |  | +        embedding: List[float],
 | 
	
		
			
				|  |  | +        k: int = 4,
 | 
	
		
			
				|  |  | +        fetch_k: int = 20,
 | 
	
		
			
				|  |  | +        lambda_mult: float = 0.5,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> List[Document]:
 | 
	
		
			
				|  |  | +        """Return docs selected using the maximal marginal relevance.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Maximal marginal relevance optimizes for similarity to query AND diversity
 | 
	
		
			
				|  |  | +        among selected documents.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            embedding: Embedding to look up documents similar to.
 | 
	
		
			
				|  |  | +            k: Number of Documents to return. Defaults to 4.
 | 
	
		
			
				|  |  | +            fetch_k: Number of Documents to fetch to pass to MMR algorithm.
 | 
	
		
			
				|  |  | +            lambda_mult: Number between 0 and 1 that determines the degree
 | 
	
		
			
				|  |  | +                        of diversity among the results with 0 corresponding
 | 
	
		
			
				|  |  | +                        to maximum diversity and 1 to minimum diversity.
 | 
	
		
			
				|  |  | +                        Defaults to 0.5.
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            List of Documents selected by maximal marginal relevance.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        results = self.max_marginal_relevance_search_with_score_by_vector(
 | 
	
		
			
				|  |  | +            embedding=embedding, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, **kwargs
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +        return list(map(itemgetter(0), results))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    @sync_call_fallback
 | 
	
		
			
				|  |  | +    async def amax_marginal_relevance_search_by_vector(
 | 
	
		
			
				|  |  | +        self,
 | 
	
		
			
				|  |  | +        embedding: List[float],
 | 
	
		
			
				|  |  | +        k: int = 4,
 | 
	
		
			
				|  |  | +        fetch_k: int = 20,
 | 
	
		
			
				|  |  | +        lambda_mult: float = 0.5,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> List[Document]:
 | 
	
		
			
				|  |  | +        """Return docs selected using the maximal marginal relevance.
 | 
	
		
			
				|  |  | +        Maximal marginal relevance optimizes for similarity to query AND diversity
 | 
	
		
			
				|  |  | +        among selected documents.
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            query: Text to look up documents similar to.
 | 
	
		
			
				|  |  | +            k: Number of Documents to return. Defaults to 4.
 | 
	
		
			
				|  |  | +            fetch_k: Number of Documents to fetch to pass to MMR algorithm.
 | 
	
		
			
				|  |  | +                     Defaults to 20.
 | 
	
		
			
				|  |  | +            lambda_mult: Number between 0 and 1 that determines the degree
 | 
	
		
			
				|  |  | +                        of diversity among the results with 0 corresponding
 | 
	
		
			
				|  |  | +                        to maximum diversity and 1 to minimum diversity.
 | 
	
		
			
				|  |  | +                        Defaults to 0.5.
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            List of Documents selected by maximal marginal relevance and distance for
 | 
	
		
			
				|  |  | +            each.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        results = await self.amax_marginal_relevance_search_with_score_by_vector(
 | 
	
		
			
				|  |  | +            embedding, k, fetch_k, lambda_mult, **kwargs
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +        return list(map(itemgetter(0), results))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def max_marginal_relevance_search_with_score_by_vector(
 | 
	
		
			
				|  |  | +        self,
 | 
	
		
			
				|  |  | +        embedding: List[float],
 | 
	
		
			
				|  |  | +        k: int = 4,
 | 
	
		
			
				|  |  | +        fetch_k: int = 20,
 | 
	
		
			
				|  |  | +        lambda_mult: float = 0.5,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> List[Tuple[Document, float]]:
 | 
	
		
			
				|  |  | +        """Return docs selected using the maximal marginal relevance.
 | 
	
		
			
				|  |  | +        Maximal marginal relevance optimizes for similarity to query AND diversity
 | 
	
		
			
				|  |  | +        among selected documents.
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            query: Text to look up documents similar to.
 | 
	
		
			
				|  |  | +            k: Number of Documents to return. Defaults to 4.
 | 
	
		
			
				|  |  | +            fetch_k: Number of Documents to fetch to pass to MMR algorithm.
 | 
	
		
			
				|  |  | +                     Defaults to 20.
 | 
	
		
			
				|  |  | +            lambda_mult: Number between 0 and 1 that determines the degree
 | 
	
		
			
				|  |  | +                        of diversity among the results with 0 corresponding
 | 
	
		
			
				|  |  | +                        to maximum diversity and 1 to minimum diversity.
 | 
	
		
			
				|  |  | +                        Defaults to 0.5.
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            List of Documents selected by maximal marginal relevance and distance for
 | 
	
		
			
				|  |  | +            each.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        query_vector = embedding
 | 
	
		
			
				|  |  | +        if self.vector_name is not None:
 | 
	
		
			
				|  |  | +            query_vector = (self.vector_name, query_vector)  # type: ignore[assignment]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        results = self.client.search(
 | 
	
		
			
				|  |  | +            collection_name=self.collection_name,
 | 
	
		
			
				|  |  | +            query_vector=query_vector,
 | 
	
		
			
				|  |  | +            with_payload=True,
 | 
	
		
			
				|  |  | +            with_vectors=True,
 | 
	
		
			
				|  |  | +            limit=fetch_k,
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +        embeddings = [
 | 
	
		
			
				|  |  | +            result.vector.get(self.vector_name)  # type: ignore[index, union-attr]
 | 
	
		
			
				|  |  | +            if self.vector_name is not None
 | 
	
		
			
				|  |  | +            else result.vector
 | 
	
		
			
				|  |  | +            for result in results
 | 
	
		
			
				|  |  | +        ]
 | 
	
		
			
				|  |  | +        mmr_selected = maximal_marginal_relevance(
 | 
	
		
			
				|  |  | +            np.array(embedding), embeddings, k=k, lambda_mult=lambda_mult
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +        return [
 | 
	
		
			
				|  |  | +            (
 | 
	
		
			
				|  |  | +                self._document_from_scored_point(
 | 
	
		
			
				|  |  | +                    results[i], self.content_payload_key, self.metadata_payload_key
 | 
	
		
			
				|  |  | +                ),
 | 
	
		
			
				|  |  | +                results[i].score,
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +            for i in mmr_selected
 | 
	
		
			
				|  |  | +        ]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    @sync_call_fallback
 | 
	
		
			
				|  |  | +    async def amax_marginal_relevance_search_with_score_by_vector(
 | 
	
		
			
				|  |  | +        self,
 | 
	
		
			
				|  |  | +        embedding: List[float],
 | 
	
		
			
				|  |  | +        k: int = 4,
 | 
	
		
			
				|  |  | +        fetch_k: int = 20,
 | 
	
		
			
				|  |  | +        lambda_mult: float = 0.5,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> List[Tuple[Document, float]]:
 | 
	
		
			
				|  |  | +        """Return docs selected using the maximal marginal relevance.
 | 
	
		
			
				|  |  | +        Maximal marginal relevance optimizes for similarity to query AND diversity
 | 
	
		
			
				|  |  | +        among selected documents.
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            query: Text to look up documents similar to.
 | 
	
		
			
				|  |  | +            k: Number of Documents to return. Defaults to 4.
 | 
	
		
			
				|  |  | +            fetch_k: Number of Documents to fetch to pass to MMR algorithm.
 | 
	
		
			
				|  |  | +                     Defaults to 20.
 | 
	
		
			
				|  |  | +            lambda_mult: Number between 0 and 1 that determines the degree
 | 
	
		
			
				|  |  | +                        of diversity among the results with 0 corresponding
 | 
	
		
			
				|  |  | +                        to maximum diversity and 1 to minimum diversity.
 | 
	
		
			
				|  |  | +                        Defaults to 0.5.
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            List of Documents selected by maximal marginal relevance and distance for
 | 
	
		
			
				|  |  | +            each.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        from qdrant_client import grpc  # noqa
 | 
	
		
			
				|  |  | +        from qdrant_client.conversions.conversion import GrpcToRest
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        response = await self.client.async_grpc_points.Search(
 | 
	
		
			
				|  |  | +            grpc.SearchPoints(
 | 
	
		
			
				|  |  | +                collection_name=self.collection_name,
 | 
	
		
			
				|  |  | +                vector_name=self.vector_name,
 | 
	
		
			
				|  |  | +                vector=embedding,
 | 
	
		
			
				|  |  | +                with_payload=grpc.WithPayloadSelector(enable=True),
 | 
	
		
			
				|  |  | +                with_vectors=grpc.WithVectorsSelector(enable=True),
 | 
	
		
			
				|  |  | +                limit=fetch_k,
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +        results = [
 | 
	
		
			
				|  |  | +            GrpcToRest.convert_vectors(result.vectors) for result in response.result
 | 
	
		
			
				|  |  | +        ]
 | 
	
		
			
				|  |  | +        embeddings: List[List[float]] = [
 | 
	
		
			
				|  |  | +            result.get(self.vector_name)  # type: ignore
 | 
	
		
			
				|  |  | +            if isinstance(result, dict)
 | 
	
		
			
				|  |  | +            else result
 | 
	
		
			
				|  |  | +            for result in results
 | 
	
		
			
				|  |  | +        ]
 | 
	
		
			
				|  |  | +        mmr_selected: List[int] = maximal_marginal_relevance(
 | 
	
		
			
				|  |  | +            np.array(embedding),
 | 
	
		
			
				|  |  | +            embeddings,
 | 
	
		
			
				|  |  | +            k=k,
 | 
	
		
			
				|  |  | +            lambda_mult=lambda_mult,
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +        return [
 | 
	
		
			
				|  |  | +            (
 | 
	
		
			
				|  |  | +                self._document_from_scored_point_grpc(
 | 
	
		
			
				|  |  | +                    response.result[i],
 | 
	
		
			
				|  |  | +                    self.content_payload_key,
 | 
	
		
			
				|  |  | +                    self.metadata_payload_key,
 | 
	
		
			
				|  |  | +                ),
 | 
	
		
			
				|  |  | +                response.result[i].score,
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +            for i in mmr_selected
 | 
	
		
			
				|  |  | +        ]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]:
 | 
	
		
			
				|  |  | +        """Delete by vector ID or other criteria.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            ids: List of ids to delete.
 | 
	
		
			
				|  |  | +            **kwargs: Other keyword arguments that subclasses might use.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            Optional[bool]: True if deletion is successful,
 | 
	
		
			
				|  |  | +            False otherwise, None if not implemented.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        from qdrant_client.http import models as rest
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        result = self.client.delete(
 | 
	
		
			
				|  |  | +            collection_name=self.collection_name,
 | 
	
		
			
				|  |  | +            points_selector=ids,
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +        return result.status == rest.UpdateStatus.COMPLETED
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    @classmethod
 | 
	
		
			
				|  |  | +    def from_texts(
 | 
	
		
			
				|  |  | +        cls: Type[Qdrant],
 | 
	
		
			
				|  |  | +        texts: List[str],
 | 
	
		
			
				|  |  | +        embedding: Embeddings,
 | 
	
		
			
				|  |  | +        metadatas: Optional[List[dict]] = None,
 | 
	
		
			
				|  |  | +        ids: Optional[Sequence[str]] = None,
 | 
	
		
			
				|  |  | +        location: Optional[str] = None,
 | 
	
		
			
				|  |  | +        url: Optional[str] = None,
 | 
	
		
			
				|  |  | +        port: Optional[int] = 6333,
 | 
	
		
			
				|  |  | +        grpc_port: int = 6334,
 | 
	
		
			
				|  |  | +        prefer_grpc: bool = False,
 | 
	
		
			
				|  |  | +        https: Optional[bool] = None,
 | 
	
		
			
				|  |  | +        api_key: Optional[str] = None,
 | 
	
		
			
				|  |  | +        prefix: Optional[str] = None,
 | 
	
		
			
				|  |  | +        timeout: Optional[float] = None,
 | 
	
		
			
				|  |  | +        host: Optional[str] = None,
 | 
	
		
			
				|  |  | +        path: Optional[str] = None,
 | 
	
		
			
				|  |  | +        collection_name: Optional[str] = None,
 | 
	
		
			
				|  |  | +        distance_func: str = "Cosine",
 | 
	
		
			
				|  |  | +        content_payload_key: str = CONTENT_KEY,
 | 
	
		
			
				|  |  | +        metadata_payload_key: str = METADATA_KEY,
 | 
	
		
			
				|  |  | +        vector_name: Optional[str] = VECTOR_NAME,
 | 
	
		
			
				|  |  | +        batch_size: int = 64,
 | 
	
		
			
				|  |  | +        shard_number: Optional[int] = None,
 | 
	
		
			
				|  |  | +        replication_factor: Optional[int] = None,
 | 
	
		
			
				|  |  | +        write_consistency_factor: Optional[int] = None,
 | 
	
		
			
				|  |  | +        on_disk_payload: Optional[bool] = None,
 | 
	
		
			
				|  |  | +        hnsw_config: Optional[common_types.HnswConfigDiff] = None,
 | 
	
		
			
				|  |  | +        optimizers_config: Optional[common_types.OptimizersConfigDiff] = None,
 | 
	
		
			
				|  |  | +        wal_config: Optional[common_types.WalConfigDiff] = None,
 | 
	
		
			
				|  |  | +        quantization_config: Optional[common_types.QuantizationConfig] = None,
 | 
	
		
			
				|  |  | +        init_from: Optional[common_types.InitFrom] = None,
 | 
	
		
			
				|  |  | +        force_recreate: bool = False,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> Qdrant:
 | 
	
		
			
				|  |  | +        """Construct Qdrant wrapper from a list of texts.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            texts: A list of texts to be indexed in Qdrant.
 | 
	
		
			
				|  |  | +            embedding: A subclass of `Embeddings`, responsible for text vectorization.
 | 
	
		
			
				|  |  | +            metadatas:
 | 
	
		
			
				|  |  | +                An optional list of metadata. If provided it has to be of the same
 | 
	
		
			
				|  |  | +                length as a list of texts.
 | 
	
		
			
				|  |  | +            ids:
 | 
	
		
			
				|  |  | +                Optional list of ids to associate with the texts. Ids have to be
 | 
	
		
			
				|  |  | +                uuid-like strings.
 | 
	
		
			
				|  |  | +            location:
 | 
	
		
			
				|  |  | +                If `:memory:` - use in-memory Qdrant instance.
 | 
	
		
			
				|  |  | +                If `str` - use it as a `url` parameter.
 | 
	
		
			
				|  |  | +                If `None` - fallback to relying on `host` and `port` parameters.
 | 
	
		
			
				|  |  | +            url: either host or str of "Optional[scheme], host, Optional[port],
 | 
	
		
			
				|  |  | +                Optional[prefix]". Default: `None`
 | 
	
		
			
				|  |  | +            port: Port of the REST API interface. Default: 6333
 | 
	
		
			
				|  |  | +            grpc_port: Port of the gRPC interface. Default: 6334
 | 
	
		
			
				|  |  | +            prefer_grpc:
 | 
	
		
			
				|  |  | +                If true - use gPRC interface whenever possible in custom methods.
 | 
	
		
			
				|  |  | +                Default: False
 | 
	
		
			
				|  |  | +            https: If true - use HTTPS(SSL) protocol. Default: None
 | 
	
		
			
				|  |  | +            api_key: API key for authentication in Qdrant Cloud. Default: None
 | 
	
		
			
				|  |  | +            prefix:
 | 
	
		
			
				|  |  | +                If not None - add prefix to the REST URL path.
 | 
	
		
			
				|  |  | +                Example: service/v1 will result in
 | 
	
		
			
				|  |  | +                    http://localhost:6333/service/v1/{qdrant-endpoint} for REST API.
 | 
	
		
			
				|  |  | +                Default: None
 | 
	
		
			
				|  |  | +            timeout:
 | 
	
		
			
				|  |  | +                Timeout for REST and gRPC API requests.
 | 
	
		
			
				|  |  | +                Default: 5.0 seconds for REST and unlimited for gRPC
 | 
	
		
			
				|  |  | +            host:
 | 
	
		
			
				|  |  | +                Host name of Qdrant service. If url and host are None, set to
 | 
	
		
			
				|  |  | +                'localhost'. Default: None
 | 
	
		
			
				|  |  | +            path:
 | 
	
		
			
				|  |  | +                Path in which the vectors will be stored while using local mode.
 | 
	
		
			
				|  |  | +                Default: None
 | 
	
		
			
				|  |  | +            collection_name:
 | 
	
		
			
				|  |  | +                Name of the Qdrant collection to be used. If not provided,
 | 
	
		
			
				|  |  | +                it will be created randomly. Default: None
 | 
	
		
			
				|  |  | +            distance_func:
 | 
	
		
			
				|  |  | +                Distance function. One of: "Cosine" / "Euclid" / "Dot".
 | 
	
		
			
				|  |  | +                Default: "Cosine"
 | 
	
		
			
				|  |  | +            content_payload_key:
 | 
	
		
			
				|  |  | +                A payload key used to store the content of the document.
 | 
	
		
			
				|  |  | +                Default: "page_content"
 | 
	
		
			
				|  |  | +            metadata_payload_key:
 | 
	
		
			
				|  |  | +                A payload key used to store the metadata of the document.
 | 
	
		
			
				|  |  | +                Default: "metadata"
 | 
	
		
			
				|  |  | +            vector_name:
 | 
	
		
			
				|  |  | +                Name of the vector to be used internally in Qdrant.
 | 
	
		
			
				|  |  | +                Default: None
 | 
	
		
			
				|  |  | +            batch_size:
 | 
	
		
			
				|  |  | +                How many vectors upload per-request.
 | 
	
		
			
				|  |  | +                Default: 64
 | 
	
		
			
				|  |  | +            shard_number: Number of shards in collection. Default is 1, minimum is 1.
 | 
	
		
			
				|  |  | +            replication_factor:
 | 
	
		
			
				|  |  | +                Replication factor for collection. Default is 1, minimum is 1.
 | 
	
		
			
				|  |  | +                Defines how many copies of each shard will be created.
 | 
	
		
			
				|  |  | +                Have effect only in distributed mode.
 | 
	
		
			
				|  |  | +            write_consistency_factor:
 | 
	
		
			
				|  |  | +                Write consistency factor for collection. Default is 1, minimum is 1.
 | 
	
		
			
				|  |  | +                Defines how many replicas should apply the operation for us to consider
 | 
	
		
			
				|  |  | +                it successful. Increasing this number will make the collection more
 | 
	
		
			
				|  |  | +                resilient to inconsistencies, but will also make it fail if not enough
 | 
	
		
			
				|  |  | +                replicas are available.
 | 
	
		
			
				|  |  | +                Does not have any performance impact.
 | 
	
		
			
				|  |  | +                Have effect only in distributed mode.
 | 
	
		
			
				|  |  | +            on_disk_payload:
 | 
	
		
			
				|  |  | +                If true - point`s payload will not be stored in memory.
 | 
	
		
			
				|  |  | +                It will be read from the disk every time it is requested.
 | 
	
		
			
				|  |  | +                This setting saves RAM by (slightly) increasing the response time.
 | 
	
		
			
				|  |  | +                Note: those payload values that are involved in filtering and are
 | 
	
		
			
				|  |  | +                indexed - remain in RAM.
 | 
	
		
			
				|  |  | +            hnsw_config: Params for HNSW index
 | 
	
		
			
				|  |  | +            optimizers_config: Params for optimizer
 | 
	
		
			
				|  |  | +            wal_config: Params for Write-Ahead-Log
 | 
	
		
			
				|  |  | +            quantization_config:
 | 
	
		
			
				|  |  | +                Params for quantization, if None - quantization will be disabled
 | 
	
		
			
				|  |  | +            init_from:
 | 
	
		
			
				|  |  | +                Use data stored in another collection to initialize this collection
 | 
	
		
			
				|  |  | +            force_recreate:
 | 
	
		
			
				|  |  | +                Force recreating the collection
 | 
	
		
			
				|  |  | +            **kwargs:
 | 
	
		
			
				|  |  | +                Additional arguments passed directly into REST client initialization
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        This is a user-friendly interface that:
 | 
	
		
			
				|  |  | +        1. Creates embeddings, one for each text
 | 
	
		
			
				|  |  | +        2. Initializes the Qdrant database as an in-memory docstore by default
 | 
	
		
			
				|  |  | +           (and overridable to a remote docstore)
 | 
	
		
			
				|  |  | +        3. Adds the text embeddings to the Qdrant database
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        This is intended to be a quick way to get started.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Example:
 | 
	
		
			
				|  |  | +            .. code-block:: python
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +                from langchain import Qdrant
 | 
	
		
			
				|  |  | +                from langchain.embeddings import OpenAIEmbeddings
 | 
	
		
			
				|  |  | +                embeddings = OpenAIEmbeddings()
 | 
	
		
			
				|  |  | +                qdrant = Qdrant.from_texts(texts, embeddings, "localhost")
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        qdrant = cls._construct_instance(
 | 
	
		
			
				|  |  | +            texts,
 | 
	
		
			
				|  |  | +            embedding,
 | 
	
		
			
				|  |  | +            metadatas,
 | 
	
		
			
				|  |  | +            ids,
 | 
	
		
			
				|  |  | +            location,
 | 
	
		
			
				|  |  | +            url,
 | 
	
		
			
				|  |  | +            port,
 | 
	
		
			
				|  |  | +            grpc_port,
 | 
	
		
			
				|  |  | +            prefer_grpc,
 | 
	
		
			
				|  |  | +            https,
 | 
	
		
			
				|  |  | +            api_key,
 | 
	
		
			
				|  |  | +            prefix,
 | 
	
		
			
				|  |  | +            timeout,
 | 
	
		
			
				|  |  | +            host,
 | 
	
		
			
				|  |  | +            path,
 | 
	
		
			
				|  |  | +            collection_name,
 | 
	
		
			
				|  |  | +            distance_func,
 | 
	
		
			
				|  |  | +            content_payload_key,
 | 
	
		
			
				|  |  | +            metadata_payload_key,
 | 
	
		
			
				|  |  | +            vector_name,
 | 
	
		
			
				|  |  | +            shard_number,
 | 
	
		
			
				|  |  | +            replication_factor,
 | 
	
		
			
				|  |  | +            write_consistency_factor,
 | 
	
		
			
				|  |  | +            on_disk_payload,
 | 
	
		
			
				|  |  | +            hnsw_config,
 | 
	
		
			
				|  |  | +            optimizers_config,
 | 
	
		
			
				|  |  | +            wal_config,
 | 
	
		
			
				|  |  | +            quantization_config,
 | 
	
		
			
				|  |  | +            init_from,
 | 
	
		
			
				|  |  | +            force_recreate,
 | 
	
		
			
				|  |  | +            **kwargs,
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +        qdrant.add_texts(texts, metadatas, ids, batch_size)
 | 
	
		
			
				|  |  | +        return qdrant
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    @classmethod
 | 
	
		
			
				|  |  | +    @sync_call_fallback
 | 
	
		
			
				|  |  | +    async def afrom_texts(
 | 
	
		
			
				|  |  | +        cls: Type[Qdrant],
 | 
	
		
			
				|  |  | +        texts: List[str],
 | 
	
		
			
				|  |  | +        embedding: Embeddings,
 | 
	
		
			
				|  |  | +        metadatas: Optional[List[dict]] = None,
 | 
	
		
			
				|  |  | +        ids: Optional[Sequence[str]] = None,
 | 
	
		
			
				|  |  | +        location: Optional[str] = None,
 | 
	
		
			
				|  |  | +        url: Optional[str] = None,
 | 
	
		
			
				|  |  | +        port: Optional[int] = 6333,
 | 
	
		
			
				|  |  | +        grpc_port: int = 6334,
 | 
	
		
			
				|  |  | +        prefer_grpc: bool = False,
 | 
	
		
			
				|  |  | +        https: Optional[bool] = None,
 | 
	
		
			
				|  |  | +        api_key: Optional[str] = None,
 | 
	
		
			
				|  |  | +        prefix: Optional[str] = None,
 | 
	
		
			
				|  |  | +        timeout: Optional[float] = None,
 | 
	
		
			
				|  |  | +        host: Optional[str] = None,
 | 
	
		
			
				|  |  | +        path: Optional[str] = None,
 | 
	
		
			
				|  |  | +        collection_name: Optional[str] = None,
 | 
	
		
			
				|  |  | +        distance_func: str = "Cosine",
 | 
	
		
			
				|  |  | +        content_payload_key: str = CONTENT_KEY,
 | 
	
		
			
				|  |  | +        metadata_payload_key: str = METADATA_KEY,
 | 
	
		
			
				|  |  | +        vector_name: Optional[str] = VECTOR_NAME,
 | 
	
		
			
				|  |  | +        batch_size: int = 64,
 | 
	
		
			
				|  |  | +        shard_number: Optional[int] = None,
 | 
	
		
			
				|  |  | +        replication_factor: Optional[int] = None,
 | 
	
		
			
				|  |  | +        write_consistency_factor: Optional[int] = None,
 | 
	
		
			
				|  |  | +        on_disk_payload: Optional[bool] = None,
 | 
	
		
			
				|  |  | +        hnsw_config: Optional[common_types.HnswConfigDiff] = None,
 | 
	
		
			
				|  |  | +        optimizers_config: Optional[common_types.OptimizersConfigDiff] = None,
 | 
	
		
			
				|  |  | +        wal_config: Optional[common_types.WalConfigDiff] = None,
 | 
	
		
			
				|  |  | +        quantization_config: Optional[common_types.QuantizationConfig] = None,
 | 
	
		
			
				|  |  | +        init_from: Optional[common_types.InitFrom] = None,
 | 
	
		
			
				|  |  | +        force_recreate: bool = False,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> Qdrant:
 | 
	
		
			
				|  |  | +        """Construct Qdrant wrapper from a list of texts.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            texts: A list of texts to be indexed in Qdrant.
 | 
	
		
			
				|  |  | +            embedding: A subclass of `Embeddings`, responsible for text vectorization.
 | 
	
		
			
				|  |  | +            metadatas:
 | 
	
		
			
				|  |  | +                An optional list of metadata. If provided it has to be of the same
 | 
	
		
			
				|  |  | +                length as a list of texts.
 | 
	
		
			
				|  |  | +            ids:
 | 
	
		
			
				|  |  | +                Optional list of ids to associate with the texts. Ids have to be
 | 
	
		
			
				|  |  | +                uuid-like strings.
 | 
	
		
			
				|  |  | +            location:
 | 
	
		
			
				|  |  | +                If `:memory:` - use in-memory Qdrant instance.
 | 
	
		
			
				|  |  | +                If `str` - use it as a `url` parameter.
 | 
	
		
			
				|  |  | +                If `None` - fallback to relying on `host` and `port` parameters.
 | 
	
		
			
				|  |  | +            url: either host or str of "Optional[scheme], host, Optional[port],
 | 
	
		
			
				|  |  | +                Optional[prefix]". Default: `None`
 | 
	
		
			
				|  |  | +            port: Port of the REST API interface. Default: 6333
 | 
	
		
			
				|  |  | +            grpc_port: Port of the gRPC interface. Default: 6334
 | 
	
		
			
				|  |  | +            prefer_grpc:
 | 
	
		
			
				|  |  | +                If true - use gPRC interface whenever possible in custom methods.
 | 
	
		
			
				|  |  | +                Default: False
 | 
	
		
			
				|  |  | +            https: If true - use HTTPS(SSL) protocol. Default: None
 | 
	
		
			
				|  |  | +            api_key: API key for authentication in Qdrant Cloud. Default: None
 | 
	
		
			
				|  |  | +            prefix:
 | 
	
		
			
				|  |  | +                If not None - add prefix to the REST URL path.
 | 
	
		
			
				|  |  | +                Example: service/v1 will result in
 | 
	
		
			
				|  |  | +                    http://localhost:6333/service/v1/{qdrant-endpoint} for REST API.
 | 
	
		
			
				|  |  | +                Default: None
 | 
	
		
			
				|  |  | +            timeout:
 | 
	
		
			
				|  |  | +                Timeout for REST and gRPC API requests.
 | 
	
		
			
				|  |  | +                Default: 5.0 seconds for REST and unlimited for gRPC
 | 
	
		
			
				|  |  | +            host:
 | 
	
		
			
				|  |  | +                Host name of Qdrant service. If url and host are None, set to
 | 
	
		
			
				|  |  | +                'localhost'. Default: None
 | 
	
		
			
				|  |  | +            path:
 | 
	
		
			
				|  |  | +                Path in which the vectors will be stored while using local mode.
 | 
	
		
			
				|  |  | +                Default: None
 | 
	
		
			
				|  |  | +            collection_name:
 | 
	
		
			
				|  |  | +                Name of the Qdrant collection to be used. If not provided,
 | 
	
		
			
				|  |  | +                it will be created randomly. Default: None
 | 
	
		
			
				|  |  | +            distance_func:
 | 
	
		
			
				|  |  | +                Distance function. One of: "Cosine" / "Euclid" / "Dot".
 | 
	
		
			
				|  |  | +                Default: "Cosine"
 | 
	
		
			
				|  |  | +            content_payload_key:
 | 
	
		
			
				|  |  | +                A payload key used to store the content of the document.
 | 
	
		
			
				|  |  | +                Default: "page_content"
 | 
	
		
			
				|  |  | +            metadata_payload_key:
 | 
	
		
			
				|  |  | +                A payload key used to store the metadata of the document.
 | 
	
		
			
				|  |  | +                Default: "metadata"
 | 
	
		
			
				|  |  | +            vector_name:
 | 
	
		
			
				|  |  | +                Name of the vector to be used internally in Qdrant.
 | 
	
		
			
				|  |  | +                Default: None
 | 
	
		
			
				|  |  | +            batch_size:
 | 
	
		
			
				|  |  | +                How many vectors upload per-request.
 | 
	
		
			
				|  |  | +                Default: 64
 | 
	
		
			
				|  |  | +            shard_number: Number of shards in collection. Default is 1, minimum is 1.
 | 
	
		
			
				|  |  | +            replication_factor:
 | 
	
		
			
				|  |  | +                Replication factor for collection. Default is 1, minimum is 1.
 | 
	
		
			
				|  |  | +                Defines how many copies of each shard will be created.
 | 
	
		
			
				|  |  | +                Have effect only in distributed mode.
 | 
	
		
			
				|  |  | +            write_consistency_factor:
 | 
	
		
			
				|  |  | +                Write consistency factor for collection. Default is 1, minimum is 1.
 | 
	
		
			
				|  |  | +                Defines how many replicas should apply the operation for us to consider
 | 
	
		
			
				|  |  | +                it successful. Increasing this number will make the collection more
 | 
	
		
			
				|  |  | +                resilient to inconsistencies, but will also make it fail if not enough
 | 
	
		
			
				|  |  | +                replicas are available.
 | 
	
		
			
				|  |  | +                Does not have any performance impact.
 | 
	
		
			
				|  |  | +                Have effect only in distributed mode.
 | 
	
		
			
				|  |  | +            on_disk_payload:
 | 
	
		
			
				|  |  | +                If true - point`s payload will not be stored in memory.
 | 
	
		
			
				|  |  | +                It will be read from the disk every time it is requested.
 | 
	
		
			
				|  |  | +                This setting saves RAM by (slightly) increasing the response time.
 | 
	
		
			
				|  |  | +                Note: those payload values that are involved in filtering and are
 | 
	
		
			
				|  |  | +                indexed - remain in RAM.
 | 
	
		
			
				|  |  | +            hnsw_config: Params for HNSW index
 | 
	
		
			
				|  |  | +            optimizers_config: Params for optimizer
 | 
	
		
			
				|  |  | +            wal_config: Params for Write-Ahead-Log
 | 
	
		
			
				|  |  | +            quantization_config:
 | 
	
		
			
				|  |  | +                Params for quantization, if None - quantization will be disabled
 | 
	
		
			
				|  |  | +            init_from:
 | 
	
		
			
				|  |  | +                Use data stored in another collection to initialize this collection
 | 
	
		
			
				|  |  | +            force_recreate:
 | 
	
		
			
				|  |  | +                Force recreating the collection
 | 
	
		
			
				|  |  | +            **kwargs:
 | 
	
		
			
				|  |  | +                Additional arguments passed directly into REST client initialization
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        This is a user-friendly interface that:
 | 
	
		
			
				|  |  | +        1. Creates embeddings, one for each text
 | 
	
		
			
				|  |  | +        2. Initializes the Qdrant database as an in-memory docstore by default
 | 
	
		
			
				|  |  | +           (and overridable to a remote docstore)
 | 
	
		
			
				|  |  | +        3. Adds the text embeddings to the Qdrant database
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        This is intended to be a quick way to get started.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Example:
 | 
	
		
			
				|  |  | +            .. code-block:: python
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +                from langchain import Qdrant
 | 
	
		
			
				|  |  | +                from langchain.embeddings import OpenAIEmbeddings
 | 
	
		
			
				|  |  | +                embeddings = OpenAIEmbeddings()
 | 
	
		
			
				|  |  | +                qdrant = await Qdrant.afrom_texts(texts, embeddings, "localhost")
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        qdrant = cls._construct_instance(
 | 
	
		
			
				|  |  | +            texts,
 | 
	
		
			
				|  |  | +            embedding,
 | 
	
		
			
				|  |  | +            metadatas,
 | 
	
		
			
				|  |  | +            ids,
 | 
	
		
			
				|  |  | +            location,
 | 
	
		
			
				|  |  | +            url,
 | 
	
		
			
				|  |  | +            port,
 | 
	
		
			
				|  |  | +            grpc_port,
 | 
	
		
			
				|  |  | +            prefer_grpc,
 | 
	
		
			
				|  |  | +            https,
 | 
	
		
			
				|  |  | +            api_key,
 | 
	
		
			
				|  |  | +            prefix,
 | 
	
		
			
				|  |  | +            timeout,
 | 
	
		
			
				|  |  | +            host,
 | 
	
		
			
				|  |  | +            path,
 | 
	
		
			
				|  |  | +            collection_name,
 | 
	
		
			
				|  |  | +            distance_func,
 | 
	
		
			
				|  |  | +            content_payload_key,
 | 
	
		
			
				|  |  | +            metadata_payload_key,
 | 
	
		
			
				|  |  | +            vector_name,
 | 
	
		
			
				|  |  | +            shard_number,
 | 
	
		
			
				|  |  | +            replication_factor,
 | 
	
		
			
				|  |  | +            write_consistency_factor,
 | 
	
		
			
				|  |  | +            on_disk_payload,
 | 
	
		
			
				|  |  | +            hnsw_config,
 | 
	
		
			
				|  |  | +            optimizers_config,
 | 
	
		
			
				|  |  | +            wal_config,
 | 
	
		
			
				|  |  | +            quantization_config,
 | 
	
		
			
				|  |  | +            init_from,
 | 
	
		
			
				|  |  | +            force_recreate,
 | 
	
		
			
				|  |  | +            **kwargs,
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +        await qdrant.aadd_texts(texts, metadatas, ids, batch_size)
 | 
	
		
			
				|  |  | +        return qdrant
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    @classmethod
 | 
	
		
			
				|  |  | +    def _construct_instance(
 | 
	
		
			
				|  |  | +        cls: Type[Qdrant],
 | 
	
		
			
				|  |  | +        texts: List[str],
 | 
	
		
			
				|  |  | +        embedding: Embeddings,
 | 
	
		
			
				|  |  | +        metadatas: Optional[List[dict]] = None,
 | 
	
		
			
				|  |  | +        ids: Optional[Sequence[str]] = None,
 | 
	
		
			
				|  |  | +        location: Optional[str] = None,
 | 
	
		
			
				|  |  | +        url: Optional[str] = None,
 | 
	
		
			
				|  |  | +        port: Optional[int] = 6333,
 | 
	
		
			
				|  |  | +        grpc_port: int = 6334,
 | 
	
		
			
				|  |  | +        prefer_grpc: bool = False,
 | 
	
		
			
				|  |  | +        https: Optional[bool] = None,
 | 
	
		
			
				|  |  | +        api_key: Optional[str] = None,
 | 
	
		
			
				|  |  | +        prefix: Optional[str] = None,
 | 
	
		
			
				|  |  | +        timeout: Optional[float] = None,
 | 
	
		
			
				|  |  | +        host: Optional[str] = None,
 | 
	
		
			
				|  |  | +        path: Optional[str] = None,
 | 
	
		
			
				|  |  | +        collection_name: Optional[str] = None,
 | 
	
		
			
				|  |  | +        distance_func: str = "Cosine",
 | 
	
		
			
				|  |  | +        content_payload_key: str = CONTENT_KEY,
 | 
	
		
			
				|  |  | +        metadata_payload_key: str = METADATA_KEY,
 | 
	
		
			
				|  |  | +        vector_name: Optional[str] = VECTOR_NAME,
 | 
	
		
			
				|  |  | +        shard_number: Optional[int] = None,
 | 
	
		
			
				|  |  | +        replication_factor: Optional[int] = None,
 | 
	
		
			
				|  |  | +        write_consistency_factor: Optional[int] = None,
 | 
	
		
			
				|  |  | +        on_disk_payload: Optional[bool] = None,
 | 
	
		
			
				|  |  | +        hnsw_config: Optional[common_types.HnswConfigDiff] = None,
 | 
	
		
			
				|  |  | +        optimizers_config: Optional[common_types.OptimizersConfigDiff] = None,
 | 
	
		
			
				|  |  | +        wal_config: Optional[common_types.WalConfigDiff] = None,
 | 
	
		
			
				|  |  | +        quantization_config: Optional[common_types.QuantizationConfig] = None,
 | 
	
		
			
				|  |  | +        init_from: Optional[common_types.InitFrom] = None,
 | 
	
		
			
				|  |  | +        force_recreate: bool = False,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> Qdrant:
 | 
	
		
			
				|  |  | +        try:
 | 
	
		
			
				|  |  | +            import qdrant_client
 | 
	
		
			
				|  |  | +        except ImportError:
 | 
	
		
			
				|  |  | +            raise ValueError(
 | 
	
		
			
				|  |  | +                "Could not import qdrant-client python package. "
 | 
	
		
			
				|  |  | +                "Please install it with `pip install qdrant-client`."
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +        from grpc import RpcError
 | 
	
		
			
				|  |  | +        from qdrant_client.http import models as rest
 | 
	
		
			
				|  |  | +        from qdrant_client.http.exceptions import UnexpectedResponse
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        # Just do a single quick embedding to get vector size
 | 
	
		
			
				|  |  | +        partial_embeddings = embedding.embed_documents(texts[:1])
 | 
	
		
			
				|  |  | +        vector_size = len(partial_embeddings[0])
 | 
	
		
			
				|  |  | +        collection_name = collection_name or uuid.uuid4().hex
 | 
	
		
			
				|  |  | +        distance_func = distance_func.upper()
 | 
	
		
			
				|  |  | +        client = qdrant_client.QdrantClient(
 | 
	
		
			
				|  |  | +            location=location,
 | 
	
		
			
				|  |  | +            url=url,
 | 
	
		
			
				|  |  | +            port=port,
 | 
	
		
			
				|  |  | +            grpc_port=grpc_port,
 | 
	
		
			
				|  |  | +            prefer_grpc=prefer_grpc,
 | 
	
		
			
				|  |  | +            https=https,
 | 
	
		
			
				|  |  | +            api_key=api_key,
 | 
	
		
			
				|  |  | +            prefix=prefix,
 | 
	
		
			
				|  |  | +            timeout=timeout,
 | 
	
		
			
				|  |  | +            host=host,
 | 
	
		
			
				|  |  | +            path=path,
 | 
	
		
			
				|  |  | +            **kwargs,
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +        try:
 | 
	
		
			
				|  |  | +            # Skip any validation in case of forced collection recreate.
 | 
	
		
			
				|  |  | +            if force_recreate:
 | 
	
		
			
				|  |  | +                raise ValueError
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            # Get the vector configuration of the existing collection and vector, if it
 | 
	
		
			
				|  |  | +            # was specified. If the old configuration does not match the current one,
 | 
	
		
			
				|  |  | +            # an exception is being thrown.
 | 
	
		
			
				|  |  | +            collection_info = client.get_collection(collection_name=collection_name)
 | 
	
		
			
				|  |  | +            current_vector_config = collection_info.config.params.vectors
 | 
	
		
			
				|  |  | +            if isinstance(current_vector_config, dict) and vector_name is not None:
 | 
	
		
			
				|  |  | +                if vector_name not in current_vector_config:
 | 
	
		
			
				|  |  | +                    raise QdrantException(
 | 
	
		
			
				|  |  | +                        f"Existing Qdrant collection {collection_name} does not "
 | 
	
		
			
				|  |  | +                        f"contain vector named {vector_name}. Did you mean one of the "
 | 
	
		
			
				|  |  | +                        f"existing vectors: {', '.join(current_vector_config.keys())}? "
 | 
	
		
			
				|  |  | +                        f"If you want to recreate the collection, set `force_recreate` "
 | 
	
		
			
				|  |  | +                        f"parameter to `True`."
 | 
	
		
			
				|  |  | +                    )
 | 
	
		
			
				|  |  | +                current_vector_config = current_vector_config.get(
 | 
	
		
			
				|  |  | +                    vector_name
 | 
	
		
			
				|  |  | +                )  # type: ignore[assignment]
 | 
	
		
			
				|  |  | +            elif isinstance(current_vector_config, dict) and vector_name is None:
 | 
	
		
			
				|  |  | +                raise QdrantException(
 | 
	
		
			
				|  |  | +                    f"Existing Qdrant collection {collection_name} uses named vectors. "
 | 
	
		
			
				|  |  | +                    f"If you want to reuse it, please set `vector_name` to any of the "
 | 
	
		
			
				|  |  | +                    f"existing named vectors: "
 | 
	
		
			
				|  |  | +                    f"{', '.join(current_vector_config.keys())}."  # noqa
 | 
	
		
			
				|  |  | +                    f"If you want to recreate the collection, set `force_recreate` "
 | 
	
		
			
				|  |  | +                    f"parameter to `True`."
 | 
	
		
			
				|  |  | +                )
 | 
	
		
			
				|  |  | +            elif (
 | 
	
		
			
				|  |  | +                not isinstance(current_vector_config, dict) and vector_name is not None
 | 
	
		
			
				|  |  | +            ):
 | 
	
		
			
				|  |  | +                raise QdrantException(
 | 
	
		
			
				|  |  | +                    f"Existing Qdrant collection {collection_name} doesn't use named "
 | 
	
		
			
				|  |  | +                    f"vectors. If you want to reuse it, please set `vector_name` to "
 | 
	
		
			
				|  |  | +                    f"`None`. If you want to recreate the collection, set "
 | 
	
		
			
				|  |  | +                    f"`force_recreate` parameter to `True`."
 | 
	
		
			
				|  |  | +                )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            # Check if the vector configuration has the same dimensionality.
 | 
	
		
			
				|  |  | +            if current_vector_config.size != vector_size:  # type: ignore[union-attr]
 | 
	
		
			
				|  |  | +                raise QdrantException(
 | 
	
		
			
				|  |  | +                    f"Existing Qdrant collection is configured for vectors with "
 | 
	
		
			
				|  |  | +                    f"{current_vector_config.size} "  # type: ignore[union-attr]
 | 
	
		
			
				|  |  | +                    f"dimensions. Selected embeddings are {vector_size}-dimensional. "
 | 
	
		
			
				|  |  | +                    f"If you want to recreate the collection, set `force_recreate` "
 | 
	
		
			
				|  |  | +                    f"parameter to `True`."
 | 
	
		
			
				|  |  | +                )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            current_distance_func = (
 | 
	
		
			
				|  |  | +                current_vector_config.distance.name.upper()  # type: ignore[union-attr]
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +            if current_distance_func != distance_func:
 | 
	
		
			
				|  |  | +                raise QdrantException(
 | 
	
		
			
				|  |  | +                    f"Existing Qdrant collection is configured for "
 | 
	
		
			
				|  |  | +                    f"{current_vector_config.distance} "  # type: ignore[union-attr]
 | 
	
		
			
				|  |  | +                    f"similarity. Please set `distance_func` parameter to "
 | 
	
		
			
				|  |  | +                    f"`{distance_func}` if you want to reuse it. If you want to "
 | 
	
		
			
				|  |  | +                    f"recreate the collection, set `force_recreate` parameter to "
 | 
	
		
			
				|  |  | +                    f"`True`."
 | 
	
		
			
				|  |  | +                )
 | 
	
		
			
				|  |  | +        except (UnexpectedResponse, RpcError, ValueError):
 | 
	
		
			
				|  |  | +            vectors_config = rest.VectorParams(
 | 
	
		
			
				|  |  | +                size=vector_size,
 | 
	
		
			
				|  |  | +                distance=rest.Distance[distance_func],
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            # If vector name was provided, we're going to use the named vectors feature
 | 
	
		
			
				|  |  | +            # with just a single vector.
 | 
	
		
			
				|  |  | +            if vector_name is not None:
 | 
	
		
			
				|  |  | +                vectors_config = {  # type: ignore[assignment]
 | 
	
		
			
				|  |  | +                    vector_name: vectors_config,
 | 
	
		
			
				|  |  | +                }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            client.recreate_collection(
 | 
	
		
			
				|  |  | +                collection_name=collection_name,
 | 
	
		
			
				|  |  | +                vectors_config=vectors_config,
 | 
	
		
			
				|  |  | +                shard_number=shard_number,
 | 
	
		
			
				|  |  | +                replication_factor=replication_factor,
 | 
	
		
			
				|  |  | +                write_consistency_factor=write_consistency_factor,
 | 
	
		
			
				|  |  | +                on_disk_payload=on_disk_payload,
 | 
	
		
			
				|  |  | +                hnsw_config=hnsw_config,
 | 
	
		
			
				|  |  | +                optimizers_config=optimizers_config,
 | 
	
		
			
				|  |  | +                wal_config=wal_config,
 | 
	
		
			
				|  |  | +                quantization_config=quantization_config,
 | 
	
		
			
				|  |  | +                init_from=init_from,
 | 
	
		
			
				|  |  | +                timeout=timeout,  # type: ignore[arg-type]
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +        qdrant = cls(
 | 
	
		
			
				|  |  | +            client=client,
 | 
	
		
			
				|  |  | +            collection_name=collection_name,
 | 
	
		
			
				|  |  | +            embeddings=embedding,
 | 
	
		
			
				|  |  | +            content_payload_key=content_payload_key,
 | 
	
		
			
				|  |  | +            metadata_payload_key=metadata_payload_key,
 | 
	
		
			
				|  |  | +            distance_strategy=distance_func,
 | 
	
		
			
				|  |  | +            vector_name=vector_name,
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +        return qdrant
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def _select_relevance_score_fn(self) -> Callable[[float], float]:
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        The 'correct' relevance function
 | 
	
		
			
				|  |  | +        may differ depending on a few things, including:
 | 
	
		
			
				|  |  | +        - the distance / similarity metric used by the VectorStore
 | 
	
		
			
				|  |  | +        - the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
 | 
	
		
			
				|  |  | +        - embedding dimensionality
 | 
	
		
			
				|  |  | +        - etc.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        if self.distance_strategy == "COSINE":
 | 
	
		
			
				|  |  | +            return self._cosine_relevance_score_fn
 | 
	
		
			
				|  |  | +        elif self.distance_strategy == "DOT":
 | 
	
		
			
				|  |  | +            return self._max_inner_product_relevance_score_fn
 | 
	
		
			
				|  |  | +        elif self.distance_strategy == "EUCLID":
 | 
	
		
			
				|  |  | +            return self._euclidean_relevance_score_fn
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            raise ValueError(
 | 
	
		
			
				|  |  | +                "Unknown distance strategy, must be cosine, "
 | 
	
		
			
				|  |  | +                "max_inner_product, or euclidean"
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def _similarity_search_with_relevance_scores(
 | 
	
		
			
				|  |  | +        self,
 | 
	
		
			
				|  |  | +        query: str,
 | 
	
		
			
				|  |  | +        k: int = 4,
 | 
	
		
			
				|  |  | +        **kwargs: Any,
 | 
	
		
			
				|  |  | +    ) -> List[Tuple[Document, float]]:
 | 
	
		
			
				|  |  | +        """Return docs and relevance scores in the range [0, 1].
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        0 is dissimilar, 1 is most similar.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            query: input text
 | 
	
		
			
				|  |  | +            k: Number of Documents to return. Defaults to 4.
 | 
	
		
			
				|  |  | +            **kwargs: kwargs to be passed to similarity search. Should include:
 | 
	
		
			
				|  |  | +                score_threshold: Optional, a floating point value between 0 to 1 to
 | 
	
		
			
				|  |  | +                    filter the resulting set of retrieved docs
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            List of Tuples of (doc, similarity_score)
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        return self.similarity_search_with_score(query, k, **kwargs)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    @classmethod
 | 
	
		
			
				|  |  | +    def _build_payloads(
 | 
	
		
			
				|  |  | +        cls,
 | 
	
		
			
				|  |  | +        texts: Iterable[str],
 | 
	
		
			
				|  |  | +        metadatas: Optional[List[dict]],
 | 
	
		
			
				|  |  | +        content_payload_key: str,
 | 
	
		
			
				|  |  | +        metadata_payload_key: str,
 | 
	
		
			
				|  |  | +    ) -> List[dict]:
 | 
	
		
			
				|  |  | +        payloads = []
 | 
	
		
			
				|  |  | +        for i, text in enumerate(texts):
 | 
	
		
			
				|  |  | +            if text is None:
 | 
	
		
			
				|  |  | +                raise ValueError(
 | 
	
		
			
				|  |  | +                    "At least one of the texts is None. Please remove it before "
 | 
	
		
			
				|  |  | +                    "calling .from_texts or .add_texts on Qdrant instance."
 | 
	
		
			
				|  |  | +                )
 | 
	
		
			
				|  |  | +            metadata = metadatas[i] if metadatas is not None else None
 | 
	
		
			
				|  |  | +            payloads.append(
 | 
	
		
			
				|  |  | +                {
 | 
	
		
			
				|  |  | +                    content_payload_key: text,
 | 
	
		
			
				|  |  | +                    metadata_payload_key: metadata,
 | 
	
		
			
				|  |  | +                }
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        return payloads
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    @classmethod
 | 
	
		
			
				|  |  | +    def _document_from_scored_point(
 | 
	
		
			
				|  |  | +        cls,
 | 
	
		
			
				|  |  | +        scored_point: Any,
 | 
	
		
			
				|  |  | +        content_payload_key: str,
 | 
	
		
			
				|  |  | +        metadata_payload_key: str,
 | 
	
		
			
				|  |  | +    ) -> Document:
 | 
	
		
			
				|  |  | +        return Document(
 | 
	
		
			
				|  |  | +            page_content=scored_point.payload.get(content_payload_key),
 | 
	
		
			
				|  |  | +            metadata=scored_point.payload.get(metadata_payload_key) or {},
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    @classmethod
 | 
	
		
			
				|  |  | +    def _document_from_scored_point_grpc(
 | 
	
		
			
				|  |  | +        cls,
 | 
	
		
			
				|  |  | +        scored_point: Any,
 | 
	
		
			
				|  |  | +        content_payload_key: str,
 | 
	
		
			
				|  |  | +        metadata_payload_key: str,
 | 
	
		
			
				|  |  | +    ) -> Document:
 | 
	
		
			
				|  |  | +        from qdrant_client.conversions.conversion import grpc_to_payload
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        payload = grpc_to_payload(scored_point.payload)
 | 
	
		
			
				|  |  | +        return Document(
 | 
	
		
			
				|  |  | +            page_content=payload[content_payload_key],
 | 
	
		
			
				|  |  | +            metadata=payload.get(metadata_payload_key) or {},
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def _build_condition(self, key: str, value: Any) -> List[rest.FieldCondition]:
 | 
	
		
			
				|  |  | +        from qdrant_client.http import models as rest
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        out = []
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        if isinstance(value, dict):
 | 
	
		
			
				|  |  | +            for _key, value in value.items():
 | 
	
		
			
				|  |  | +                out.extend(self._build_condition(f"{key}.{_key}", value))
 | 
	
		
			
				|  |  | +        elif isinstance(value, list):
 | 
	
		
			
				|  |  | +            for _value in value:
 | 
	
		
			
				|  |  | +                if isinstance(_value, dict):
 | 
	
		
			
				|  |  | +                    out.extend(self._build_condition(f"{key}[]", _value))
 | 
	
		
			
				|  |  | +                else:
 | 
	
		
			
				|  |  | +                    out.extend(self._build_condition(f"{key}", _value))
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            out.append(
 | 
	
		
			
				|  |  | +                rest.FieldCondition(
 | 
	
		
			
				|  |  | +                    key=f"{self.metadata_payload_key}.{key}",
 | 
	
		
			
				|  |  | +                    match=rest.MatchValue(value=value),
 | 
	
		
			
				|  |  | +                )
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        return out
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def _qdrant_filter_from_dict(
 | 
	
		
			
				|  |  | +        self, filter: Optional[DictFilter]
 | 
	
		
			
				|  |  | +    ) -> Optional[rest.Filter]:
 | 
	
		
			
				|  |  | +        from qdrant_client.http import models as rest
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        if not filter:
 | 
	
		
			
				|  |  | +            return None
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        return rest.Filter(
 | 
	
		
			
				|  |  | +            must=[
 | 
	
		
			
				|  |  | +                condition
 | 
	
		
			
				|  |  | +                for key, value in filter.items()
 | 
	
		
			
				|  |  | +                for condition in self._build_condition(key, value)
 | 
	
		
			
				|  |  | +            ]
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def _embed_query(self, query: str) -> List[float]:
 | 
	
		
			
				|  |  | +        """Embed query text.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Used to provide backward compatibility with `embedding_function` argument.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            query: Query text.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            List of floats representing the query embedding.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        if self.embeddings is not None:
 | 
	
		
			
				|  |  | +            embedding = self.embeddings.embed_query(query)
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            if self._embeddings_function is not None:
 | 
	
		
			
				|  |  | +                embedding = self._embeddings_function(query)
 | 
	
		
			
				|  |  | +            else:
 | 
	
		
			
				|  |  | +                raise ValueError("Neither of embeddings or embedding_function is set")
 | 
	
		
			
				|  |  | +        return embedding.tolist() if hasattr(embedding, "tolist") else embedding
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def _embed_texts(self, texts: Iterable[str]) -> List[List[float]]:
 | 
	
		
			
				|  |  | +        """Embed search texts.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Used to provide backward compatibility with `embedding_function` argument.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Args:
 | 
	
		
			
				|  |  | +            texts: Iterable of texts to embed.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Returns:
 | 
	
		
			
				|  |  | +            List of floats representing the texts embedding.
 | 
	
		
			
				|  |  | +        """
 | 
	
		
			
				|  |  | +        if self.embeddings is not None:
 | 
	
		
			
				|  |  | +            embeddings = self.embeddings.embed_documents(list(texts))
 | 
	
		
			
				|  |  | +            if hasattr(embeddings, "tolist"):
 | 
	
		
			
				|  |  | +                embeddings = embeddings.tolist()
 | 
	
		
			
				|  |  | +        elif self._embeddings_function is not None:
 | 
	
		
			
				|  |  | +            embeddings = []
 | 
	
		
			
				|  |  | +            for text in texts:
 | 
	
		
			
				|  |  | +                embedding = self._embeddings_function(text)
 | 
	
		
			
				|  |  | +                if hasattr(embeddings, "tolist"):
 | 
	
		
			
				|  |  | +                    embedding = embedding.tolist()
 | 
	
		
			
				|  |  | +                embeddings.append(embedding)
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            raise ValueError("Neither of embeddings or embedding_function is set")
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        return embeddings
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def _generate_rest_batches(
 | 
	
		
			
				|  |  | +        self,
 | 
	
		
			
				|  |  | +        texts: Iterable[str],
 | 
	
		
			
				|  |  | +        metadatas: Optional[List[dict]] = None,
 | 
	
		
			
				|  |  | +        ids: Optional[Sequence[str]] = None,
 | 
	
		
			
				|  |  | +        batch_size: int = 64,
 | 
	
		
			
				|  |  | +    ) -> Generator[Tuple[List[str], List[rest.PointStruct]], None, None]:
 | 
	
		
			
				|  |  | +        from qdrant_client.http import models as rest
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        texts_iterator = iter(texts)
 | 
	
		
			
				|  |  | +        metadatas_iterator = iter(metadatas or [])
 | 
	
		
			
				|  |  | +        ids_iterator = iter(ids or [uuid.uuid4().hex for _ in iter(texts)])
 | 
	
		
			
				|  |  | +        while batch_texts := list(islice(texts_iterator, batch_size)):
 | 
	
		
			
				|  |  | +            # Take the corresponding metadata and id for each text in a batch
 | 
	
		
			
				|  |  | +            batch_metadatas = list(islice(metadatas_iterator, batch_size)) or None
 | 
	
		
			
				|  |  | +            batch_ids = list(islice(ids_iterator, batch_size))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            # Generate the embeddings for all the texts in a batch
 | 
	
		
			
				|  |  | +            batch_embeddings = self._embed_texts(batch_texts)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            points = [
 | 
	
		
			
				|  |  | +                rest.PointStruct(
 | 
	
		
			
				|  |  | +                    id=point_id,
 | 
	
		
			
				|  |  | +                    vector=vector
 | 
	
		
			
				|  |  | +                    if self.vector_name is None
 | 
	
		
			
				|  |  | +                    else {self.vector_name: vector},
 | 
	
		
			
				|  |  | +                    payload=payload,
 | 
	
		
			
				|  |  | +                )
 | 
	
		
			
				|  |  | +                for point_id, vector, payload in zip(
 | 
	
		
			
				|  |  | +                    batch_ids,
 | 
	
		
			
				|  |  | +                    batch_embeddings,
 | 
	
		
			
				|  |  | +                    self._build_payloads(
 | 
	
		
			
				|  |  | +                        batch_texts,
 | 
	
		
			
				|  |  | +                        batch_metadatas,
 | 
	
		
			
				|  |  | +                        self.content_payload_key,
 | 
	
		
			
				|  |  | +                        self.metadata_payload_key,
 | 
	
		
			
				|  |  | +                    ),
 | 
	
		
			
				|  |  | +                )
 | 
	
		
			
				|  |  | +            ]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            yield batch_ids, points
 |