|
@@ -0,0 +1,142 @@
|
|
|
+from io import BytesIO
|
|
|
+from typing import Optional
|
|
|
+from functools import reduce
|
|
|
+from pydub import AudioSegment
|
|
|
+
|
|
|
+from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
|
|
+from core.model_runtime.errors.invoke import InvokeBadRequestError
|
|
|
+from core.model_runtime.model_providers.__base.tts_model import TTSModel
|
|
|
+from core.model_runtime.model_providers.tongyi._common import _CommonTongyi
|
|
|
+
|
|
|
+import dashscope
|
|
|
+from flask import Response, stream_with_context
|
|
|
+import concurrent.futures
|
|
|
+
|
|
|
+
|
|
|
+class TongyiText2SpeechModel(_CommonTongyi, TTSModel):
|
|
|
+ """
|
|
|
+ Model class for Tongyi Speech to text model.
|
|
|
+ """
|
|
|
+ def _invoke(self, model: str, credentials: dict, content_text: str, streaming: bool, user: Optional[str] = None) -> any:
|
|
|
+ """
|
|
|
+ _invoke text2speech model
|
|
|
+
|
|
|
+ :param model: model name
|
|
|
+ :param credentials: model credentials
|
|
|
+ :param content_text: text content to be translated
|
|
|
+ :param streaming: output is streaming
|
|
|
+ :param user: unique user id
|
|
|
+ :return: text translated to audio file
|
|
|
+ """
|
|
|
+ self._is_ffmpeg_installed()
|
|
|
+ audio_type = self._get_model_audio_type(model, credentials)
|
|
|
+ if streaming:
|
|
|
+ return Response(stream_with_context(self._tts_invoke_streaming(model=model,
|
|
|
+ credentials=credentials,
|
|
|
+ content_text=content_text,
|
|
|
+ user=user)),
|
|
|
+ status=200, mimetype=f'audio/{audio_type}')
|
|
|
+ else:
|
|
|
+ return self._tts_invoke(model=model, credentials=credentials, content_text=content_text, user=user)
|
|
|
+
|
|
|
+ def validate_credentials(self, model: str, credentials: dict, user: Optional[str] = None) -> None:
|
|
|
+ """
|
|
|
+ validate credentials text2speech model
|
|
|
+
|
|
|
+ :param model: model name
|
|
|
+ :param credentials: model credentials
|
|
|
+ :param user: unique user id
|
|
|
+ :return: text translated to audio file
|
|
|
+ """
|
|
|
+ try:
|
|
|
+ self._tts_invoke(
|
|
|
+ model=model,
|
|
|
+ credentials=credentials,
|
|
|
+ content_text='Hello world!',
|
|
|
+ user=user
|
|
|
+ )
|
|
|
+ except Exception as ex:
|
|
|
+ raise CredentialsValidateFailedError(str(ex))
|
|
|
+
|
|
|
+ def _tts_invoke(self, model: str, credentials: dict, content_text: str, user: Optional[str] = None) -> Response:
|
|
|
+ """
|
|
|
+ _tts_invoke text2speech model
|
|
|
+
|
|
|
+ :param model: model name
|
|
|
+ :param credentials: model credentials
|
|
|
+ :param content_text: text content to be translated
|
|
|
+ :param user: unique user id
|
|
|
+ :return: text translated to audio file
|
|
|
+ """
|
|
|
+ audio_type = self._get_model_audio_type(model, credentials)
|
|
|
+ word_limit = self._get_model_word_limit(model, credentials)
|
|
|
+ max_workers = self._get_model_workers_limit(model, credentials)
|
|
|
+
|
|
|
+ try:
|
|
|
+ sentences = list(self._split_text_into_sentences(text=content_text, limit=word_limit))
|
|
|
+ audio_bytes_list = list()
|
|
|
+
|
|
|
+ # Create a thread pool and map the function to the list of sentences
|
|
|
+ with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
|
|
|
+ futures = [executor.submit(self._process_sentence, model=model, sentence=sentence,
|
|
|
+ credentials=credentials, audio_type=audio_type) for sentence in sentences]
|
|
|
+ for future in futures:
|
|
|
+ try:
|
|
|
+ audio_bytes_list.append(future.result())
|
|
|
+ except Exception as ex:
|
|
|
+ raise InvokeBadRequestError(str(ex))
|
|
|
+
|
|
|
+ audio_segments = [AudioSegment.from_file(BytesIO(audio_bytes), format=audio_type) for audio_bytes in
|
|
|
+ audio_bytes_list if audio_bytes]
|
|
|
+ combined_segment = reduce(lambda x, y: x + y, audio_segments)
|
|
|
+ buffer: BytesIO = BytesIO()
|
|
|
+ combined_segment.export(buffer, format=audio_type)
|
|
|
+ buffer.seek(0)
|
|
|
+ return Response(buffer.read(), status=200, mimetype=f"audio/{audio_type}")
|
|
|
+ except Exception as ex:
|
|
|
+ raise InvokeBadRequestError(str(ex))
|
|
|
+
|
|
|
+ # Todo: To improve the streaming function
|
|
|
+ def _tts_invoke_streaming(self, model: str, credentials: dict, content_text: str, user: Optional[str] = None) -> any:
|
|
|
+ """
|
|
|
+ _tts_invoke_streaming text2speech model
|
|
|
+
|
|
|
+ :param model: model name
|
|
|
+ :param credentials: model credentials
|
|
|
+ :param content_text: text content to be translated
|
|
|
+ :param user: unique user id
|
|
|
+ :return: text translated to audio file
|
|
|
+ """
|
|
|
+ # transform credentials to kwargs for model instance
|
|
|
+ dashscope.api_key = credentials.get('dashscope_api_key')
|
|
|
+ voice_name = self._get_model_voice(model, credentials)
|
|
|
+ word_limit = self._get_model_word_limit(model, credentials)
|
|
|
+ audio_type = self._get_model_audio_type(model, credentials)
|
|
|
+ try:
|
|
|
+ sentences = list(self._split_text_into_sentences(text=content_text, limit=word_limit))
|
|
|
+ for sentence in sentences:
|
|
|
+ response = dashscope.audio.tts.SpeechSynthesizer.call(model=voice_name, sample_rate=48000, text=sentence.strip(),
|
|
|
+ format=audio_type, word_timestamp_enabled=True,
|
|
|
+ phoneme_timestamp_enabled=True)
|
|
|
+ if isinstance(response.get_audio_data(), bytes):
|
|
|
+ return response.get_audio_data()
|
|
|
+ except Exception as ex:
|
|
|
+ raise InvokeBadRequestError(str(ex))
|
|
|
+
|
|
|
+ def _process_sentence(self, sentence: str, model: str, credentials: dict, audio_type: str):
|
|
|
+ """
|
|
|
+ _tts_invoke Tongyi text2speech model api
|
|
|
+
|
|
|
+ :param model: model name
|
|
|
+ :param credentials: model credentials
|
|
|
+ :param sentence: text content to be translated
|
|
|
+ :param audio_type: audio file type
|
|
|
+ :return: text translated to audio file
|
|
|
+ """
|
|
|
+ # transform credentials to kwargs for model instance
|
|
|
+ dashscope.api_key = credentials.get('dashscope_api_key')
|
|
|
+ voice_name = self._get_model_voice(model, credentials)
|
|
|
+
|
|
|
+ response = dashscope.audio.tts.SpeechSynthesizer.call(model=voice_name, sample_rate=48000, text=sentence.strip(), format=audio_type)
|
|
|
+ if isinstance(response.get_audio_data(), bytes):
|
|
|
+ return response.get_audio_data()
|