| 
					
				 | 
			
			
				@@ -382,13 +382,15 @@ class IndexingRunner: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 ) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 total_segments += len(documents) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                embedding_model_type_instance = embedding_model_instance.model_type_instance 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                embedding_model_type_instance = None 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if embedding_model_instance: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    embedding_model_type_instance = embedding_model_instance.model_type_instance 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 for document in documents: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     if len(preview_texts) < 5: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                         preview_texts.append(document.page_content) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    if indexing_technique == 'high_quality' or embedding_model_instance: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    if indexing_technique == 'high_quality' and embedding_model_type_instance: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                         tokens += embedding_model_type_instance.get_num_tokens( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                             model=embedding_model_instance.model, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                             credentials=embedding_model_instance.credentials, 
			 |