|
@@ -5,12 +5,12 @@ import re
|
|
|
import threading
|
|
|
import time
|
|
|
import uuid
|
|
|
-from typing import Optional, List, cast
|
|
|
+from typing import Optional, List, cast, Type, Union, Literal, AbstractSet, Collection, Any
|
|
|
|
|
|
from flask import current_app, Flask
|
|
|
from flask_login import current_user
|
|
|
from langchain.schema import Document
|
|
|
-from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
|
|
|
+from langchain.text_splitter import TextSplitter, TS, TokenTextSplitter
|
|
|
from sqlalchemy.orm.exc import ObjectDeletedError
|
|
|
|
|
|
from core.data_loader.file_extractor import FileExtractor
|
|
@@ -23,7 +23,8 @@ from core.errors.error import ProviderTokenNotInitError
|
|
|
from core.model_runtime.entities.model_entities import ModelType, PriceType
|
|
|
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
|
|
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
|
|
-from core.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
|
|
|
+from core.model_runtime.model_providers.__base.tokenizers.gpt2_tokenzier import GPT2Tokenizer
|
|
|
+from core.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter, EnhanceRecursiveCharacterTextSplitter
|
|
|
from extensions.ext_database import db
|
|
|
from extensions.ext_redis import redis_client
|
|
|
from extensions.ext_storage import storage
|
|
@@ -502,7 +503,8 @@ class IndexingRunner:
|
|
|
if separator:
|
|
|
separator = separator.replace('\\n', '\n')
|
|
|
|
|
|
- character_splitter = FixedRecursiveCharacterTextSplitter.from_tiktoken_encoder(
|
|
|
+
|
|
|
+ character_splitter = FixedRecursiveCharacterTextSplitter.from_gpt2_encoder(
|
|
|
chunk_size=segmentation["max_tokens"],
|
|
|
chunk_overlap=0,
|
|
|
fixed_separator=separator,
|
|
@@ -510,7 +512,7 @@ class IndexingRunner:
|
|
|
)
|
|
|
else:
|
|
|
# Automatic segmentation
|
|
|
- character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
|
|
|
+ character_splitter = EnhanceRecursiveCharacterTextSplitter.from_gpt2_encoder(
|
|
|
chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
|
|
|
chunk_overlap=0,
|
|
|
separators=["\n\n", "。", ".", " ", ""]
|