|  | @@ -1,7 +1,7 @@
 | 
	
		
			
				|  |  |  import base64
 | 
	
		
			
				|  |  |  import copy
 | 
	
		
			
				|  |  |  import time
 | 
	
		
			
				|  |  | -from typing import Optional, Tuple
 | 
	
		
			
				|  |  | +from typing import Optional, Tuple, Union
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  import numpy as np
 | 
	
		
			
				|  |  |  import tiktoken
 | 
	
	
		
			
				|  | @@ -76,7 +76,7 @@ class AzureOpenAITextEmbeddingModel(_CommonAzureOpenAI, TextEmbeddingModel):
 | 
	
		
			
				|  |  |                  embeddings_batch, embedding_used_tokens = self._embedding_invoke(
 | 
	
		
			
				|  |  |                      model=model,
 | 
	
		
			
				|  |  |                      client=client,
 | 
	
		
			
				|  |  | -                    texts=[""],
 | 
	
		
			
				|  |  | +                    texts="",
 | 
	
		
			
				|  |  |                      extra_model_kwargs=extra_model_kwargs
 | 
	
		
			
				|  |  |                  )
 | 
	
		
			
				|  |  |  
 | 
	
	
		
			
				|  | @@ -147,7 +147,7 @@ class AzureOpenAITextEmbeddingModel(_CommonAzureOpenAI, TextEmbeddingModel):
 | 
	
		
			
				|  |  |          return ai_model_entity.entity
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      @staticmethod
 | 
	
		
			
				|  |  | -    def _embedding_invoke(model: str, client: AzureOpenAI, texts: list[str],
 | 
	
		
			
				|  |  | +    def _embedding_invoke(model: str, client: AzureOpenAI, texts: Union[list[str], str],
 | 
	
		
			
				|  |  |                            extra_model_kwargs: dict) -> Tuple[list[list[float]], int]:
 | 
	
		
			
				|  |  |          response = client.embeddings.create(
 | 
	
		
			
				|  |  |              input=texts,
 |