| 
					
				 | 
			
			
				@@ -12,6 +12,7 @@ from core.rag.datasource.entity.embedding import Embeddings 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 from extensions.ext_database import db 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 from extensions.ext_redis import redis_client 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 from libs import helper 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from models.dataset import Embedding 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 logger = logging.getLogger(__name__) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -23,32 +24,55 @@ class CacheEmbedding(Embeddings): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     def embed_documents(self, texts: list[str]) -> list[list[float]]: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         """Embed search docs in batches of 10.""" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        text_embeddings = [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        try: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            model_schema = model_type_instance.get_model_schema(self._model_instance.model, self._model_instance.credentials) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            max_chunks = model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS] \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties else 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            for i in range(0, len(texts), max_chunks): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                batch_texts = texts[i:i + max_chunks] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                embedding_result = self._model_instance.invoke_text_embedding( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    texts=batch_texts, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    user=self._user 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                ) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                for vector in embedding_result.embeddings: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    try: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        normalized_embedding = (vector / np.linalg.norm(vector)).tolist() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        text_embeddings.append(normalized_embedding) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    except IntegrityError: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        db.session.rollback() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    except Exception as e: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        logging.exception('Failed to add embedding to redis') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        except Exception as ex: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            logger.error('Failed to embed documents: ', ex) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            raise ex 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # use doc embedding cache or store if not exists 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        text_embeddings = [None for _ in range(len(texts))] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        embedding_queue_indices = [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for i, text in enumerate(texts): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            hash = helper.generate_text_hash(text) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            embedding = db.session.query(Embedding).filter_by(model_name=self._model_instance.model, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                                              hash=hash, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                                              provider_name=self._model_instance.provider).first() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if embedding: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                text_embeddings[i] = embedding.get_embedding() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                embedding_queue_indices.append(i) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if embedding_queue_indices: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            embedding_queue_texts = [texts[i] for i in embedding_queue_indices] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            embedding_queue_embeddings = [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            try: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                model_schema = model_type_instance.get_model_schema(self._model_instance.model, self._model_instance.credentials) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                max_chunks = model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS] \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties else 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                for i in range(0, len(embedding_queue_texts), max_chunks): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    batch_texts = embedding_queue_texts[i:i + max_chunks] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    embedding_result = self._model_instance.invoke_text_embedding( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        texts=batch_texts, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        user=self._user 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    ) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    for vector in embedding_result.embeddings: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        try: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            normalized_embedding = (vector / np.linalg.norm(vector)).tolist() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            embedding_queue_embeddings.append(normalized_embedding) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        except IntegrityError: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            db.session.rollback() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        except Exception as e: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            logging.exception('Failed transform embedding: ', e) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                for i, embedding in zip(embedding_queue_indices, embedding_queue_embeddings): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    text_embeddings[i] = embedding 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    hash = helper.generate_text_hash(texts[i]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    embedding_cache = Embedding(model_name=self._model_instance.model, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                          hash=hash, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                          provider_name=self._model_instance.provider) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    embedding_cache.set_embedding(embedding) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    db.session.add(embedding_cache) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                db.session.commit() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            except Exception as ex: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                db.session.rollback() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                logger.error('Failed to embed documents: ', ex) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                raise ex 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         return text_embeddings 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -61,8 +85,6 @@ class CacheEmbedding(Embeddings): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         if embedding: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             redis_client.expire(embedding_cache_key, 600) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             return list(np.frombuffer(base64.b64decode(embedding), dtype="float")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         try: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             embedding_result = self._model_instance.invoke_text_embedding( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 texts=[text], 
			 |