| 
					
				 | 
			
			
				@@ -0,0 +1,132 @@ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import time 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from typing import Optional 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import dashscope 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from core.model_runtime.entities.model_entities import PriceType 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from core.model_runtime.entities.text_embedding_entities import ( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    EmbeddingUsage, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    TextEmbeddingResult, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from core.model_runtime.errors.validate import CredentialsValidateFailedError 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from core.model_runtime.model_providers.__base.text_embedding_model import ( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    TextEmbeddingModel, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from core.model_runtime.model_providers.tongyi._common import _CommonTongyi 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+class TongyiTextEmbeddingModel(_CommonTongyi, TextEmbeddingModel): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    """ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    Model class for Tongyi text embedding model. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    """ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def _invoke( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            model: str, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            credentials: dict, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            texts: list[str], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            user: Optional[str] = None, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    ) -> TextEmbeddingResult: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        """ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Invoke text embedding model 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        :param model: model name 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        :param credentials: model credentials 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        :param texts: texts to embed 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        :param user: unique user id 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        :return: embeddings result 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        """ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        credentials_kwargs = self._to_credential_kwargs(credentials) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        dashscope.api_key = credentials_kwargs["dashscope_api_key"] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        embeddings, embedding_used_tokens = self.embed_documents(model, texts) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return TextEmbeddingResult( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            embeddings=embeddings, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            usage=self._calc_response_usage(model, credentials_kwargs, embedding_used_tokens), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            model=model 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        ) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def get_num_tokens(self, model: str, credentials: dict, texts: list[str]) -> int: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        """ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Get number of tokens for given prompt messages 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        :param model: model name 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        :param credentials: model credentials 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        :param texts: texts to embed 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        :return: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        """ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if len(texts) == 0: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            return 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        total_num_tokens = 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for text in texts: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            total_num_tokens += self._get_num_tokens_by_gpt2(text) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return total_num_tokens 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def validate_credentials(self, model: str, credentials: dict) -> None: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        """ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Validate model credentials 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        :param model: model name 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        :param credentials: model credentials 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        :return: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        """ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        try: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # transform credentials to kwargs for model instance 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            credentials_kwargs = self._to_credential_kwargs(credentials) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            dashscope.api_key = credentials_kwargs["dashscope_api_key"] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # call embedding model 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.embed_documents(model=model, texts=["ping"]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        except Exception as ex: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            raise CredentialsValidateFailedError(str(ex)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    @staticmethod 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def embed_documents(model: str, texts: list[str]) -> tuple[list[list[float]], int]: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        """Call out to Tongyi's embedding endpoint. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Args: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            texts: The list of texts to embed. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Returns: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            List of embeddings, one for each text, and tokens usage. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        """ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        embeddings = [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        embedding_used_tokens = 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for text in texts: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            response = dashscope.TextEmbedding.call(model=model, input=text, text_type="document") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            data = response.output["embeddings"][0] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            embeddings.append(data["embedding"]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            embedding_used_tokens += response.usage["total_tokens"] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return [list(map(float, e)) for e in embeddings], embedding_used_tokens 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def _calc_response_usage( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self, model: str, credentials: dict, tokens: int 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    ) -> EmbeddingUsage: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        """ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Calculate response usage 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        :param model: model name 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        :param tokens: input tokens 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        :return: usage 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        """ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # get input price info 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        input_price_info = self.get_price( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            model=model, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            credentials=credentials, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            price_type=PriceType.INPUT, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            tokens=tokens 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        ) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # transform usage 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        usage = EmbeddingUsage( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            tokens=tokens, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            total_tokens=tokens, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            unit_price=input_price_info.unit_price, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            price_unit=input_price_info.unit, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            total_price=input_price_info.total_amount, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            currency=input_price_info.currency, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            latency=time.perf_counter() - self.started_at 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        ) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return usage 
			 |