|
@@ -1,10 +1,12 @@
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
|
from core.rag.datasource.retrieval_service import RetrievalService
|
|
|
+from core.rag.models.document import Document as RetrievalDocument
|
|
|
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
|
|
from core.tools.tool.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
|
|
|
from extensions.ext_database import db
|
|
|
from models.dataset import Dataset, Document, DocumentSegment
|
|
|
+from services.external_knowledge_service import ExternalDatasetService
|
|
|
|
|
|
default_retrieval_model = {
|
|
|
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
|
|
@@ -53,97 +55,137 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
|
|
|
|
|
|
for hit_callback in self.hit_callbacks:
|
|
|
hit_callback.on_query(query, dataset.id)
|
|
|
-
|
|
|
- # get retrieval model , if the model is not setting , using default
|
|
|
- retrieval_model = dataset.retrieval_model or default_retrieval_model
|
|
|
- if dataset.indexing_technique == "economy":
|
|
|
- # use keyword table query
|
|
|
- documents = RetrievalService.retrieve(
|
|
|
- retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=self.top_k
|
|
|
+ if dataset.provider == "external":
|
|
|
+ results = []
|
|
|
+ external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
|
|
|
+ tenant_id=dataset.tenant_id,
|
|
|
+ dataset_id=dataset.id,
|
|
|
+ query=query,
|
|
|
+ external_retrieval_parameters=dataset.retrieval_model,
|
|
|
)
|
|
|
- return str("\n".join([document.page_content for document in documents]))
|
|
|
+ for external_document in external_documents:
|
|
|
+ document = RetrievalDocument(
|
|
|
+ page_content=external_document.get("content"),
|
|
|
+ metadata=external_document.get("metadata"),
|
|
|
+ provider="external",
|
|
|
+ )
|
|
|
+ document.metadata["score"] = external_document.get("score")
|
|
|
+ document.metadata["title"] = external_document.get("title")
|
|
|
+ document.metadata["dataset_id"] = dataset.id
|
|
|
+ document.metadata["dataset_name"] = dataset.name
|
|
|
+ results.append(document)
|
|
|
+ # deal with external documents
|
|
|
+ context_list = []
|
|
|
+ for position, item in enumerate(results, start=1):
|
|
|
+ source = {
|
|
|
+ "position": position,
|
|
|
+ "dataset_id": item.metadata.get("dataset_id"),
|
|
|
+ "dataset_name": item.metadata.get("dataset_name"),
|
|
|
+ "document_name": item.metadata.get("title"),
|
|
|
+ "data_source_type": "external",
|
|
|
+ "retriever_from": self.retriever_from,
|
|
|
+ "score": item.metadata.get("score"),
|
|
|
+ "title": item.metadata.get("title"),
|
|
|
+ "content": item.page_content,
|
|
|
+ }
|
|
|
+ context_list.append(source)
|
|
|
+ for hit_callback in self.hit_callbacks:
|
|
|
+ hit_callback.return_retriever_resource_info(context_list)
|
|
|
+
|
|
|
+ return str("\n".join([item.page_content for item in results]))
|
|
|
else:
|
|
|
- if self.top_k > 0:
|
|
|
- # retrieval source
|
|
|
+ # get retrieval model , if the model is not setting , using default
|
|
|
+ retrieval_model = dataset.retrieval_model or default_retrieval_model
|
|
|
+ if dataset.indexing_technique == "economy":
|
|
|
+ # use keyword table query
|
|
|
documents = RetrievalService.retrieve(
|
|
|
- retrieval_method=retrieval_model.get("search_method", "semantic_search"),
|
|
|
- dataset_id=dataset.id,
|
|
|
- query=query,
|
|
|
- top_k=self.top_k,
|
|
|
- score_threshold=retrieval_model.get("score_threshold", 0.0)
|
|
|
- if retrieval_model["score_threshold_enabled"]
|
|
|
- else 0.0,
|
|
|
- reranking_model=retrieval_model.get("reranking_model", None)
|
|
|
- if retrieval_model["reranking_enable"]
|
|
|
- else None,
|
|
|
- reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
|
|
|
- weights=retrieval_model.get("weights", None),
|
|
|
+ retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=self.top_k
|
|
|
)
|
|
|
+ return str("\n".join([document.page_content for document in documents]))
|
|
|
else:
|
|
|
- documents = []
|
|
|
-
|
|
|
- for hit_callback in self.hit_callbacks:
|
|
|
- hit_callback.on_tool_end(documents)
|
|
|
- document_score_list = {}
|
|
|
- if dataset.indexing_technique != "economy":
|
|
|
- for item in documents:
|
|
|
- if item.metadata.get("score"):
|
|
|
- document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
|
|
|
- document_context_list = []
|
|
|
- index_node_ids = [document.metadata["doc_id"] for document in documents]
|
|
|
- segments = DocumentSegment.query.filter(
|
|
|
- DocumentSegment.dataset_id == self.dataset_id,
|
|
|
- DocumentSegment.completed_at.isnot(None),
|
|
|
- DocumentSegment.status == "completed",
|
|
|
- DocumentSegment.enabled == True,
|
|
|
- DocumentSegment.index_node_id.in_(index_node_ids),
|
|
|
- ).all()
|
|
|
-
|
|
|
- if segments:
|
|
|
- index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
|
|
|
- sorted_segments = sorted(
|
|
|
- segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
|
|
|
- )
|
|
|
- for segment in sorted_segments:
|
|
|
- if segment.answer:
|
|
|
- document_context_list.append(f"question:{segment.get_sign_content()} answer:{segment.answer}")
|
|
|
- else:
|
|
|
- document_context_list.append(segment.get_sign_content())
|
|
|
- if self.return_resource:
|
|
|
- context_list = []
|
|
|
- resource_number = 1
|
|
|
+ if self.top_k > 0:
|
|
|
+ # retrieval source
|
|
|
+ documents = RetrievalService.retrieve(
|
|
|
+ retrieval_method=retrieval_model.get("search_method", "semantic_search"),
|
|
|
+ dataset_id=dataset.id,
|
|
|
+ query=query,
|
|
|
+ top_k=self.top_k,
|
|
|
+ score_threshold=retrieval_model.get("score_threshold", 0.0)
|
|
|
+ if retrieval_model["score_threshold_enabled"]
|
|
|
+ else 0.0,
|
|
|
+ reranking_model=retrieval_model.get("reranking_model", None)
|
|
|
+ if retrieval_model["reranking_enable"]
|
|
|
+ else None,
|
|
|
+ reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
|
|
|
+ weights=retrieval_model.get("weights", None),
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ documents = []
|
|
|
+
|
|
|
+ for hit_callback in self.hit_callbacks:
|
|
|
+ hit_callback.on_tool_end(documents)
|
|
|
+ document_score_list = {}
|
|
|
+ if dataset.indexing_technique != "economy":
|
|
|
+ for item in documents:
|
|
|
+ if item.metadata.get("score"):
|
|
|
+ document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
|
|
|
+ document_context_list = []
|
|
|
+ index_node_ids = [document.metadata["doc_id"] for document in documents]
|
|
|
+ segments = DocumentSegment.query.filter(
|
|
|
+ DocumentSegment.dataset_id == self.dataset_id,
|
|
|
+ DocumentSegment.completed_at.isnot(None),
|
|
|
+ DocumentSegment.status == "completed",
|
|
|
+ DocumentSegment.enabled == True,
|
|
|
+ DocumentSegment.index_node_id.in_(index_node_ids),
|
|
|
+ ).all()
|
|
|
+
|
|
|
+ if segments:
|
|
|
+ index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
|
|
|
+ sorted_segments = sorted(
|
|
|
+ segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
|
|
|
+ )
|
|
|
for segment in sorted_segments:
|
|
|
- context = {}
|
|
|
- document = Document.query.filter(
|
|
|
- Document.id == segment.document_id,
|
|
|
- Document.enabled == True,
|
|
|
- Document.archived == False,
|
|
|
- ).first()
|
|
|
- if dataset and document:
|
|
|
- source = {
|
|
|
- "position": resource_number,
|
|
|
- "dataset_id": dataset.id,
|
|
|
- "dataset_name": dataset.name,
|
|
|
- "document_id": document.id,
|
|
|
- "document_name": document.name,
|
|
|
- "data_source_type": document.data_source_type,
|
|
|
- "segment_id": segment.id,
|
|
|
- "retriever_from": self.retriever_from,
|
|
|
- "score": document_score_list.get(segment.index_node_id, None),
|
|
|
- }
|
|
|
- if self.retriever_from == "dev":
|
|
|
- source["hit_count"] = segment.hit_count
|
|
|
- source["word_count"] = segment.word_count
|
|
|
- source["segment_position"] = segment.position
|
|
|
- source["index_node_hash"] = segment.index_node_hash
|
|
|
- if segment.answer:
|
|
|
- source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
|
|
|
- else:
|
|
|
- source["content"] = segment.content
|
|
|
- context_list.append(source)
|
|
|
- resource_number += 1
|
|
|
-
|
|
|
- for hit_callback in self.hit_callbacks:
|
|
|
- hit_callback.return_retriever_resource_info(context_list)
|
|
|
-
|
|
|
- return str("\n".join(document_context_list))
|
|
|
+ if segment.answer:
|
|
|
+ document_context_list.append(
|
|
|
+ f"question:{segment.get_sign_content()} answer:{segment.answer}"
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ document_context_list.append(segment.get_sign_content())
|
|
|
+ if self.return_resource:
|
|
|
+ context_list = []
|
|
|
+ resource_number = 1
|
|
|
+ for segment in sorted_segments:
|
|
|
+ context = {}
|
|
|
+ document = Document.query.filter(
|
|
|
+ Document.id == segment.document_id,
|
|
|
+ Document.enabled == True,
|
|
|
+ Document.archived == False,
|
|
|
+ ).first()
|
|
|
+ if dataset and document:
|
|
|
+ source = {
|
|
|
+ "position": resource_number,
|
|
|
+ "dataset_id": dataset.id,
|
|
|
+ "dataset_name": dataset.name,
|
|
|
+ "document_id": document.id,
|
|
|
+ "document_name": document.name,
|
|
|
+ "data_source_type": document.data_source_type,
|
|
|
+ "segment_id": segment.id,
|
|
|
+ "retriever_from": self.retriever_from,
|
|
|
+ "score": document_score_list.get(segment.index_node_id, None),
|
|
|
+ }
|
|
|
+ if self.retriever_from == "dev":
|
|
|
+ source["hit_count"] = segment.hit_count
|
|
|
+ source["word_count"] = segment.word_count
|
|
|
+ source["segment_position"] = segment.position
|
|
|
+ source["index_node_hash"] = segment.index_node_hash
|
|
|
+ if segment.answer:
|
|
|
+ source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
|
|
|
+ else:
|
|
|
+ source["content"] = segment.content
|
|
|
+ context_list.append(source)
|
|
|
+ resource_number += 1
|
|
|
+
|
|
|
+ for hit_callback in self.hit_callbacks:
|
|
|
+ hit_callback.return_retriever_resource_info(context_list)
|
|
|
+
|
|
|
+ return str("\n".join(document_context_list))
|