| 
					
				 | 
			
			
				@@ -5,7 +5,7 @@ from core.model_runtime.entities.text_embedding_entities import TextEmbeddingRes 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 from core.model_runtime.model_providers.wenxin.text_embedding.text_embedding import WenxinTextEmbeddingModel 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-def test_invoke_embedding_model(): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def test_invoke_embedding_v1(): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     sleep(3) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     model = WenxinTextEmbeddingModel() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -21,4 +21,61 @@ def test_invoke_embedding_model(): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     assert isinstance(response, TextEmbeddingResult) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     assert len(response.embeddings) == 3 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    assert isinstance(response.embeddings[0], list) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    assert isinstance(response.embeddings[0], list) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def test_invoke_embedding_bge_large_en(): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    sleep(3) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    model = WenxinTextEmbeddingModel() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    response = model.invoke( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        model='bge-large-en', 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        credentials={ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            'api_key': os.environ.get('WENXIN_API_KEY'), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            'secret_key': os.environ.get('WENXIN_SECRET_KEY') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        texts=['hello', '你好', 'xxxxx'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        user="abc-123" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    ) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    assert isinstance(response, TextEmbeddingResult) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    assert len(response.embeddings) == 3 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    assert isinstance(response.embeddings[0], list) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def test_invoke_embedding_bge_large_zh(): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    sleep(3) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    model = WenxinTextEmbeddingModel() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    response = model.invoke( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        model='bge-large-zh', 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        credentials={ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            'api_key': os.environ.get('WENXIN_API_KEY'), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            'secret_key': os.environ.get('WENXIN_SECRET_KEY') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        texts=['hello', '你好', 'xxxxx'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        user="abc-123" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    ) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    assert isinstance(response, TextEmbeddingResult) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    assert len(response.embeddings) == 3 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    assert isinstance(response.embeddings[0], list) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def test_invoke_embedding_tao_8k(): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    sleep(3) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    model = WenxinTextEmbeddingModel() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    response = model.invoke( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        model='tao-8k', 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        credentials={ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            'api_key': os.environ.get('WENXIN_API_KEY'), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            'secret_key': os.environ.get('WENXIN_SECRET_KEY') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        texts=['hello', '你好', 'xxxxx'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        user="abc-123" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    ) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    assert isinstance(response, TextEmbeddingResult) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    assert len(response.embeddings) == 3 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    assert isinstance(response.embeddings[0], list) 
			 |