|
@@ -1,16 +1,23 @@
|
|
|
-import logging
|
|
|
-from typing import Any
|
|
|
+import uuid
|
|
|
+from typing import Any, Optional
|
|
|
|
|
|
-from pgvecto_rs.sdk import PGVectoRs, Record
|
|
|
from pydantic import BaseModel, root_validator
|
|
|
+from sqlalchemy import Column, Sequence, String, Table, create_engine, insert
|
|
|
from sqlalchemy import text as sql_text
|
|
|
+from sqlalchemy.dialects.postgresql import JSON, TEXT
|
|
|
from sqlalchemy.orm import Session
|
|
|
|
|
|
+try:
|
|
|
+ from sqlalchemy.orm import declarative_base
|
|
|
+except ImportError:
|
|
|
+ from sqlalchemy.ext.declarative import declarative_base
|
|
|
+
|
|
|
from core.rag.datasource.vdb.vector_base import BaseVector
|
|
|
from core.rag.models.document import Document
|
|
|
from extensions.ext_redis import redis_client
|
|
|
|
|
|
-logger = logging.getLogger(__name__)
|
|
|
+Base = declarative_base() # type: Any
|
|
|
+
|
|
|
|
|
|
class RelytConfig(BaseModel):
|
|
|
host: str
|
|
@@ -36,16 +43,14 @@ class RelytConfig(BaseModel):
|
|
|
|
|
|
class RelytVector(BaseVector):
|
|
|
|
|
|
- def __init__(self, collection_name: str, config: RelytConfig, dim: int):
|
|
|
+ def __init__(self, collection_name: str, config: RelytConfig, group_id: str):
|
|
|
super().__init__(collection_name)
|
|
|
+ self.embedding_dimension = 1536
|
|
|
self._client_config = config
|
|
|
self._url = f"postgresql+psycopg2://{config.user}:{config.password}@{config.host}:{config.port}/{config.database}"
|
|
|
- self._client = PGVectoRs(
|
|
|
- db_url=self._url,
|
|
|
- collection_name=self._collection_name,
|
|
|
- dimension=dim
|
|
|
- )
|
|
|
+ self.client = create_engine(self._url)
|
|
|
self._fields = []
|
|
|
+ self._group_id = group_id
|
|
|
|
|
|
def get_type(self) -> str:
|
|
|
return 'relyt'
|
|
@@ -54,6 +59,7 @@ class RelytVector(BaseVector):
|
|
|
index_params = {}
|
|
|
metadatas = [d.metadata for d in texts]
|
|
|
self.create_collection(len(embeddings[0]))
|
|
|
+ self.embedding_dimension = len(embeddings[0])
|
|
|
self.add_texts(texts, embeddings)
|
|
|
|
|
|
def create_collection(self, dimension: int):
|
|
@@ -63,21 +69,21 @@ class RelytVector(BaseVector):
|
|
|
if redis_client.get(collection_exist_cache_key):
|
|
|
return
|
|
|
index_name = f"{self._collection_name}_embedding_index"
|
|
|
- with Session(self._client._engine) as session:
|
|
|
- drop_statement = sql_text(f"DROP TABLE IF EXISTS collection_{self._collection_name}")
|
|
|
+ with Session(self.client) as session:
|
|
|
+ drop_statement = sql_text(f"""DROP TABLE IF EXISTS "{self._collection_name}"; """)
|
|
|
session.execute(drop_statement)
|
|
|
create_statement = sql_text(f"""
|
|
|
- CREATE TABLE IF NOT EXISTS collection_{self._collection_name} (
|
|
|
- id UUID PRIMARY KEY,
|
|
|
- text TEXT NOT NULL,
|
|
|
- meta JSONB NOT NULL,
|
|
|
+ CREATE TABLE IF NOT EXISTS "{self._collection_name}" (
|
|
|
+ id TEXT PRIMARY KEY,
|
|
|
+ document TEXT NOT NULL,
|
|
|
+ metadata JSON NOT NULL,
|
|
|
embedding vector({dimension}) NOT NULL
|
|
|
) using heap;
|
|
|
""")
|
|
|
session.execute(create_statement)
|
|
|
index_statement = sql_text(f"""
|
|
|
CREATE INDEX {index_name}
|
|
|
- ON collection_{self._collection_name} USING vectors(embedding vector_l2_ops)
|
|
|
+ ON "{self._collection_name}" USING vectors(embedding vector_l2_ops)
|
|
|
WITH (options = $$
|
|
|
optimizing.optimizing_threads = 30
|
|
|
segment.max_growing_segment_size = 2000
|
|
@@ -92,21 +98,62 @@ class RelytVector(BaseVector):
|
|
|
redis_client.set(collection_exist_cache_key, 1, ex=3600)
|
|
|
|
|
|
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
|
|
|
- records = [Record.from_text(d.page_content, e, d.metadata) for d, e in zip(documents, embeddings)]
|
|
|
- pks = [str(r.id) for r in records]
|
|
|
- self._client.insert(records)
|
|
|
- return pks
|
|
|
+ from pgvecto_rs.sqlalchemy import Vector
|
|
|
+
|
|
|
+ ids = [str(uuid.uuid1()) for _ in documents]
|
|
|
+ metadatas = [d.metadata for d in documents]
|
|
|
+ for metadata in metadatas:
|
|
|
+ metadata['group_id'] = self._group_id
|
|
|
+ texts = [d.page_content for d in documents]
|
|
|
+
|
|
|
+ # Define the table schema
|
|
|
+ chunks_table = Table(
|
|
|
+ self._collection_name,
|
|
|
+ Base.metadata,
|
|
|
+ Column("id", TEXT, primary_key=True),
|
|
|
+ Column("embedding", Vector(len(embeddings[0]))),
|
|
|
+ Column("document", String, nullable=True),
|
|
|
+ Column("metadata", JSON, nullable=True),
|
|
|
+ extend_existing=True,
|
|
|
+ )
|
|
|
+
|
|
|
+ chunks_table_data = []
|
|
|
+ with self.client.connect() as conn:
|
|
|
+ with conn.begin():
|
|
|
+ for document, metadata, chunk_id, embedding in zip(
|
|
|
+ texts, metadatas, ids, embeddings
|
|
|
+ ):
|
|
|
+ chunks_table_data.append(
|
|
|
+ {
|
|
|
+ "id": chunk_id,
|
|
|
+ "embedding": embedding,
|
|
|
+ "document": document,
|
|
|
+ "metadata": metadata,
|
|
|
+ }
|
|
|
+ )
|
|
|
+
|
|
|
+ # Execute the batch insert when the batch size is reached
|
|
|
+ if len(chunks_table_data) == 500:
|
|
|
+ conn.execute(insert(chunks_table).values(chunks_table_data))
|
|
|
+ # Clear the chunks_table_data list for the next batch
|
|
|
+ chunks_table_data.clear()
|
|
|
+
|
|
|
+ # Insert any remaining records that didn't make up a full batch
|
|
|
+ if chunks_table_data:
|
|
|
+ conn.execute(insert(chunks_table).values(chunks_table_data))
|
|
|
+
|
|
|
+ return ids
|
|
|
|
|
|
def delete_by_document_id(self, document_id: str):
|
|
|
ids = self.get_ids_by_metadata_field('document_id', document_id)
|
|
|
if ids:
|
|
|
- self._client.delete_by_ids(ids)
|
|
|
+ self.delete_by_uuids(ids)
|
|
|
|
|
|
def get_ids_by_metadata_field(self, key: str, value: str):
|
|
|
result = None
|
|
|
- with Session(self._client._engine) as session:
|
|
|
+ with Session(self.client) as session:
|
|
|
select_statement = sql_text(
|
|
|
- f"SELECT id FROM collection_{self._collection_name} WHERE meta->>'{key}' = '{value}'; "
|
|
|
+ f"""SELECT id FROM "{self._collection_name}" WHERE metadata->>'{key}' = '{value}'; """
|
|
|
)
|
|
|
result = session.execute(select_statement).fetchall()
|
|
|
if result:
|
|
@@ -114,56 +161,140 @@ class RelytVector(BaseVector):
|
|
|
else:
|
|
|
return None
|
|
|
|
|
|
+ def delete_by_uuids(self, ids: list[str] = None):
|
|
|
+ """Delete by vector IDs.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ ids: List of ids to delete.
|
|
|
+ """
|
|
|
+ from pgvecto_rs.sqlalchemy import Vector
|
|
|
+
|
|
|
+ if ids is None:
|
|
|
+ raise ValueError("No ids provided to delete.")
|
|
|
+
|
|
|
+ # Define the table schema
|
|
|
+ chunks_table = Table(
|
|
|
+ self._collection_name,
|
|
|
+ Base.metadata,
|
|
|
+ Column("id", TEXT, primary_key=True),
|
|
|
+ Column("embedding", Vector(self.embedding_dimension)),
|
|
|
+ Column("document", String, nullable=True),
|
|
|
+ Column("metadata", JSON, nullable=True),
|
|
|
+ extend_existing=True,
|
|
|
+ )
|
|
|
+
|
|
|
+ try:
|
|
|
+ with self.client.connect() as conn:
|
|
|
+ with conn.begin():
|
|
|
+ delete_condition = chunks_table.c.id.in_(ids)
|
|
|
+ conn.execute(chunks_table.delete().where(delete_condition))
|
|
|
+ return True
|
|
|
+ except Exception as e:
|
|
|
+ print("Delete operation failed:", str(e)) # noqa: T201
|
|
|
+ return False
|
|
|
+
|
|
|
def delete_by_metadata_field(self, key: str, value: str):
|
|
|
|
|
|
ids = self.get_ids_by_metadata_field(key, value)
|
|
|
if ids:
|
|
|
- self._client.delete_by_ids(ids)
|
|
|
+ self.delete_by_uuids(ids)
|
|
|
|
|
|
def delete_by_ids(self, doc_ids: list[str]) -> None:
|
|
|
- with Session(self._client._engine) as session:
|
|
|
+
|
|
|
+ with Session(self.client) as session:
|
|
|
+ ids_str = ','.join(f"'{doc_id}'" for doc_id in doc_ids)
|
|
|
select_statement = sql_text(
|
|
|
- f"SELECT id FROM collection_{self._collection_name} WHERE meta->>'doc_id' in ('{doc_ids}'); "
|
|
|
+ f"""SELECT id FROM "{self._collection_name}" WHERE metadata->>'doc_id' in ({ids_str}); """
|
|
|
)
|
|
|
result = session.execute(select_statement).fetchall()
|
|
|
if result:
|
|
|
ids = [item[0] for item in result]
|
|
|
- self._client.delete_by_ids(ids)
|
|
|
+ self.delete_by_uuids(ids)
|
|
|
|
|
|
def delete(self) -> None:
|
|
|
- with Session(self._client._engine) as session:
|
|
|
- session.execute(sql_text(f"DROP TABLE IF EXISTS collection_{self._collection_name}"))
|
|
|
+ with Session(self.client) as session:
|
|
|
+ session.execute(sql_text(f"""DROP TABLE IF EXISTS "{self._collection_name}";"""))
|
|
|
session.commit()
|
|
|
|
|
|
def text_exists(self, id: str) -> bool:
|
|
|
- with Session(self._client._engine) as session:
|
|
|
+ with Session(self.client) as session:
|
|
|
select_statement = sql_text(
|
|
|
- f"SELECT id FROM collection_{self._collection_name} WHERE meta->>'doc_id' = '{id}' limit 1; "
|
|
|
+ f"""SELECT id FROM "{self._collection_name}" WHERE metadata->>'doc_id' = '{id}' limit 1; """
|
|
|
)
|
|
|
result = session.execute(select_statement).fetchall()
|
|
|
return len(result) > 0
|
|
|
|
|
|
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
|
|
|
- from pgvecto_rs.sdk import filters
|
|
|
- filter_condition = filters.meta_contains(kwargs.get('filter'))
|
|
|
- results = self._client.search(
|
|
|
- top_k=int(kwargs.get('top_k')),
|
|
|
+ results = self.similarity_search_with_score_by_vector(
|
|
|
+ k=int(kwargs.get('top_k')),
|
|
|
embedding=query_vector,
|
|
|
- filter=filter_condition
|
|
|
+ filter=kwargs.get('filter')
|
|
|
)
|
|
|
|
|
|
# Organize results.
|
|
|
docs = []
|
|
|
- for record, dis in results:
|
|
|
- metadata = record.meta
|
|
|
- metadata['score'] = dis
|
|
|
+ for document, score in results:
|
|
|
score_threshold = kwargs.get('score_threshold') if kwargs.get('score_threshold') else 0.0
|
|
|
- if dis > score_threshold:
|
|
|
- doc = Document(page_content=record.text,
|
|
|
- metadata=metadata)
|
|
|
- docs.append(doc)
|
|
|
+ if score > score_threshold:
|
|
|
+ docs.append(document)
|
|
|
return docs
|
|
|
|
|
|
+ def similarity_search_with_score_by_vector(
|
|
|
+ self,
|
|
|
+ embedding: list[float],
|
|
|
+ k: int = 4,
|
|
|
+ filter: Optional[dict] = None,
|
|
|
+ ) -> list[tuple[Document, float]]:
|
|
|
+ # Add the filter if provided
|
|
|
+ try:
|
|
|
+ from sqlalchemy.engine import Row
|
|
|
+ except ImportError:
|
|
|
+ raise ImportError(
|
|
|
+ "Could not import Row from sqlalchemy.engine. "
|
|
|
+ "Please 'pip install sqlalchemy>=1.4'."
|
|
|
+ )
|
|
|
+
|
|
|
+ filter_condition = ""
|
|
|
+ if filter is not None:
|
|
|
+ conditions = [
|
|
|
+ f"metadata->>{key!r} in ({', '.join(map(repr, value))})" if len(value) > 1
|
|
|
+ else f"metadata->>{key!r} = {value[0]!r}"
|
|
|
+ for key, value in filter.items()
|
|
|
+ ]
|
|
|
+ filter_condition = f"WHERE {' AND '.join(conditions)}"
|
|
|
+
|
|
|
+ # Define the base query
|
|
|
+ sql_query = f"""
|
|
|
+ set vectors.enable_search_growing = on;
|
|
|
+ set vectors.enable_search_write = on;
|
|
|
+ SELECT document, metadata, embedding <-> :embedding as distance
|
|
|
+ FROM "{self._collection_name}"
|
|
|
+ {filter_condition}
|
|
|
+ ORDER BY embedding <-> :embedding
|
|
|
+ LIMIT :k
|
|
|
+ """
|
|
|
+
|
|
|
+ # Set up the query parameters
|
|
|
+ embedding_str = ", ".join(format(x) for x in embedding)
|
|
|
+ embedding_str = "[" + embedding_str + "]"
|
|
|
+ params = {"embedding": embedding_str, "k": k}
|
|
|
+
|
|
|
+ # Execute the query and fetch the results
|
|
|
+ with self.client.connect() as conn:
|
|
|
+ results: Sequence[Row] = conn.execute(sql_text(sql_query), params).fetchall()
|
|
|
+
|
|
|
+ documents_with_scores = [
|
|
|
+ (
|
|
|
+ Document(
|
|
|
+ page_content=result.document,
|
|
|
+ metadata=result.metadata,
|
|
|
+ ),
|
|
|
+ result.distance,
|
|
|
+ )
|
|
|
+ for result in results
|
|
|
+ ]
|
|
|
+ return documents_with_scores
|
|
|
+
|
|
|
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
|
|
# milvus/zilliz/relyt doesn't support bm25 search
|
|
|
return []
|